Hydroxyapatite (HA) nanocoating was electrodeposited on the surface mechanical attrition treated (SMATed) AZ31 magnesium alloy. Phases, morphologies and the adhesion of coating were characterized by X-ray diffraction, scanning electron microscopy (SEM) and 3D optical profiler. The corrosion resistance of the HA coating was tested by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The results showed that the HA coating on SMATed sample had a better crystallization than that on original one. The thickness of HA coating increased from 25 to 40 m. The bonding strength between HA coating and SMATed substrate was higher than that between the coating and untreated counterpart. Potentiodynamic polarization and EIS demonstrated that the corrosion current density of HA coating on SMATed substrate decreased by 30.84% than that on original. The corrosion potential shifted 80.3 mV to the positive direction. The corrosion resistance of coatings on SMATed sample was significantly enhanced. The immersion experiments showed that the HA coatings on SMATed sample exhibited a better biological activity.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2019.15746DOI Listing

Publication Analysis

Top Keywords

coating smated
12
smated sample
12
surface mechanical
8
mechanical attrition
8
corrosion resistance
8
potentiodynamic polarization
8
smated substrate
8
coatings smated
8
coating
7
smated
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!