Polarization switching is a fundamental feature of ferroelectric materials, enabling a plethora of applications and captivating the attention of the scientific community for over half a century. Many previous studies considered ferroelectric switching as a purely physical process, whereas polarization is fully controlled by the superposition of electric fields. However, screening charge is required for thermodynamic stability of the single domain state that is of interest in many technological applications. The screening process has always been assumed to be fast; thus, the rate-limiting phenomena were believed to be domain nucleation and domain wall dynamics. In this manuscript, we demonstrate that polarization switching under an atomic force microscopy tip leads to reversible ionic motion in the top 3 nm of PbZrTiO surface layer. This evidence points to a strong chemical component to a process believed to be purely physical and has major implications for understanding ferroelectric materials, making ferroelectric devices, and interpreting local ferroelectric switching.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.8b13034DOI Listing

Publication Analysis

Top Keywords

polarization switching
12
ferroelectric materials
8
ferroelectric switching
8
purely physical
8
switching
5
ferroelectric
5
nanoscale electrochemical
4
electrochemical phenomena
4
polarization
4
phenomena polarization
4

Similar Publications

Realizing field-free switching of perpendicular magnetization by spin-orbit torques is crucial for developing advanced magnetic memory and logic devices. However, existing methods often involve complex designs or hybrid approaches, which complicate fabrication and affect device stability and scalability. Here, we propose a novel approach using -polarized spin currents for deterministic switching of perpendicular magnetization through interfacial engineering.

View Article and Find Full Text PDF

Dynamic change of polarity in spread through air spaces of pulmonary malignancies.

J Pathol

January 2025

Department of Clinical Bio-resource Research and Development, Graduate School of Medicine, Kyoto University, Kyoto, Japan.

Spread through air spaces (STAS) is a histological finding of lung tumours where tumour cells exist within the air space of the lung parenchyma beyond the margin of the main tumour. Although STAS is an important prognostic factor, the pathobiology of STAS remains unclear. Here, we investigated the mechanism of STAS by analysing the relationship between STAS and polarity switching in vivo and in vitro.

View Article and Find Full Text PDF

Two-Dimensional Nonvolatile Valley Spin Valve.

ACS Nano

January 2025

Department of Physics and Astronomy & Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, Nebraska 68588-0299, United States.

A spin valve represents a well-established device concept in magnetic memory technologies, whose functionality is determined by electron transmission, controlled by the relative alignment of magnetic moments of the two ferromagnetic layers. Recently, the advent of valleytronics has conceptualized a valley spin valve (VSV)─a device that utilizes the valley degree of freedom and spin-valley locking to achieve a similar valve effect without relying on magnetism. In this study, we propose a nonvolatile VSV (-VSV) based on a two-dimensional (2D) ferroelectric semiconductor where resistance of -VSV is controlled by a ferroelectric domain wall between two uniformly polarized domains.

View Article and Find Full Text PDF

Optically pure monosubstituted [n]paracyclophanes are promising candidates for material synthesis, asymmetric catalysis, and drug discovery. Thus far, only a few catalytic asymmetric synthesis processes have been reported for assessing these stained atropisomers. In this study, we describe a highly enantioselective synthesis of monosubstituted [n]paracyclophanes by combining desymmetrization and kinetic resolution.

View Article and Find Full Text PDF

Allergic Reactivity and Memory Occur Independently of Sequential Switching Through IgG1.

Allergy

January 2025

Schroeder Allergy and Immunology Research Institute, Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Canada.

Allergic reactions to foods are primarily driven by allergen-binding immunoglobulin (Ig)E antibodies. IgE-expressing cells can be generated through direct switching from IgM to IgE or a sequential class switching pathway where activated B cells first switch to an intermediary isotype, most frequently IgG1, and then to IgE. It has been proposed that sequential class switch recombination is involved in augmenting the severity of allergic reactions, generating high affinity IgE, differentiation of IgE plasma cells, and in holding the memory of IgE responses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!