As promising candidates for anode materials in lithium ion batteries (LIB), two-dimensional tungsten disulfide (WS) and WS@(N-doped) graphite composites were synthesized, and their electrochemical properties were comprehensibly studied in conjunction with calculations. The WS nanosheets, WS@graphite, and WS@N-doped graphite (N-graphite) exhibit outstanding cycling performance with capacities of 633, 780, and 963 mA h g, respectively. To understand their lithium storage mechanism, first-principles calculations involving a series of ab initio NVT- NPT molecular dynamics simulations were conducted. The calculated discharge curves for amorphous phase are well matched with the experimental ones, and the capacities reach 620, 743, and 915 mA h g for WS, WS@graphite, and WS@N-graphite, respectively. The large capacities of the two composites can be attributed to the tendency of W and Li atoms to interact with graphite, suppressing the formation of W metal clusters. In the case of WS@N-graphite, vigorous amorphization of the N-graphite enhances the interaction of W and Li atoms with the fragmented N-graphite in such a way that unfavorable Li-W repulsion is avoided at very early stage of lithiation. As a result, the volume expansion in WS@graphite and WS@N-graphite is calculated to be remarkably small (only 6 and 44%, respectively, versus 150% for WS). Therefore WS@(N-)graphite composites are expected to be almost free of mechanical pulverization after repeated cycles, which makes them promising and excellent candidates for high-performance LIBs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.8b10133 | DOI Listing |
Adv Sci (Weinh)
December 2024
Institute of Materials Science, Technische Universität Darmstadt, Peter-Grünberg-Str. 2, D-64287, Darmstadt, Germany.
The design of cathode/electrolyte interfaces in high-energy density Li-ion batteries is critical to protect the surface against undesirable oxygen release from the cathodes when batteries are charged to high voltage. However, the involvement of the engineered interface in the cationic and anionic redox reactions associated with (de-)lithiation is often ignored, mostly due to the difficulty to separate these processes from chemical/catalytic reactions at the cathode/electrolyte interface. Here, a new electron energy band diagrams concept is developed that includes the examination of the electrochemical- and ionization- potentials evolution upon batteries cycling.
View Article and Find Full Text PDFSci Rep
December 2024
Shandong Engineering Research Center of Green and High-value Marine Fine Chemical, Weifang University of Science and Technology, Shouguang, 262700, People's Republic of China.
To enhance the volumetric energy density and initial coulombic efficiency (ICE) of titanium oxide (TiO) as anode electrode material for lithium-ion batteries (LIB), this study employed a surface-confined in-situ inter-growth mechanism to prepare a TiO embedded carbon microsphere composite. The results revealed that the composite exhibited a highly integrated structure of TiO with oxygen vacancies and carbon, along with an exceptionally small specific surface area of 11.52 m/g.
View Article and Find Full Text PDFJ Control Release
December 2024
Department of Chemical Engineering, McMaster University, 1280 Main Street, West Hamilton, ON L8S 4L8, Canada. Electronic address:
While bipolar disorder patients can benefit from lithium therapy, high levels of lithium in the serum can induce undesirable systemic side effects. Intranasal (IN) lithium delivery offers a potential solution to this challenge given its potential to facilitate improved lithium transport to brain when delivered to the olfactory mucosa. Herein, a sprayable, in situ forming nanoparticle network hydrogel (NNH) based on Schiff base interactions between chelator-functionalized oxidized starch nanoparticles (SNPs) and carboxymethyl chitosan (CMCh) is reported that can be deployed within the nasal cavity to release ultra-small penetrative SNPs over time.
View Article and Find Full Text PDFMembranes (Basel)
December 2024
National Research and Development Institute for Forestry "Marin Drăcea"-INCDS, 128 Boulvard Eroilor, 077190 Voluntari, Romania.
Global concerns about pollution reduction, associated with the continuous technological development of electronic equipment raises challenge for the future regarding lithium-ion batteries exploitation, use, and recovery through recycling of critical metals. Several human and environmental issues are reported, including related diseases caused by lithium waste. Lithium in Li-ion batteries can be recovered through various methods to prevent environmental contamination, and Li can be reused as a recyclable resource.
View Article and Find Full Text PDFGels
December 2024
School of Chemistry and Materials Science, Guangdong University of Education, Guangzhou 510303, China.
Compared to traditional liquid electrolytes, solid electrolytes have received widespread attention due to their higher safety. In this work, a vinyl functionalized metal-organic framework porous material (MIL-101(Cr)-NH-Met, noted as MCN-M) is synthesized by postsynthetic modification. A novel three-dimensional hybrid gel composite solid electrolyte (GCSE-P/MCN-M) is successfully prepared via in situ gel reaction of a mixture containing multifunctional hybrid crosslinker (MCN-M), lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), ethylene carbonate (EC), diethylene glycol monomethyl ether methacrylate (EGM) and polyethylene (vinylidene fluoridee) (PVDF).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!