Optical gating derived from persistent photodoping is a promising technique that can control the transport behavior of two-dimensional (2D) materials through light modulation. The advantage of photoinduced doping is that the doping can be controlled precisely and spatially by tuning the light intensity and position. As most photoinduced doping methods suffer from a low doping level, persistent, strong photodoping was conducted in this study in TiO -MoS heterostructures under ultraviolet (UV) illumination, which precisely controlled the doping to a high level (1.5 × 10 cm) with a trap-mediated mechanism. This mechanism was confirmed by controlling the doping level with various UV pretreatment doses. After photodoping, devices displayed superior mobility, which is a characteristic of the modulation doping used in high-electron-mobility transistors. The modulation doping sites in the inner TiO layer were far from the channel surface (MoS); thus, the channel was able to preserve its high-mobility property even after doping. This dose-dependent, strong, and persistent photodoping phenomenon can render the TiO -MoS heterostructure suitable for use in UV detectors and in nonvolatile light-driven memory products. Moreover, by using spatially controlled light scans, selective photodoping at the contact edges can dramatically reduce the contact resistance without destroying the on-off ratio of the device by forming an n-n-n channel. Because TiO -MoS heterostructures are versatile, they provide a compelling platform for high-performance 2D optoelectronic devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.8b11374 | DOI Listing |
Nanomaterials (Basel)
December 2024
Fort Hare Institute of Technology, University of Fort Hare, Private Bag X1314, Alice 5700, Eastern Cape, South Africa.
Energy generation and storage are critical challenges for developing economies due to rising populations and limited access to clean energy resources. Fossil fuels, commonly used for energy production, are costly and contribute to environmental pollution through greenhouse gas emissions. Quantum dot-sensitized solar cells (QDSSCs) offer a promising alternative due to their stability, low cost, and high-power conversion efficiency (PCE) compared to other third-generation solar cells.
View Article and Find Full Text PDFACS Omega
December 2024
China Astronaut Research and Training Center, Beijing 100094, China.
The development of catalysts with high activity and selectivity for the electrochemical nitrogen reduction reaction (NRR) remains crucial. Molybdenum carbide (MoC) shows promise as an electrocatalyst for NRR but faces challenges due to the difficulty of N adsorption and activation as well as the competitive hydrogen evolution reaction. In this study, we propose a strategy of combining TiO with MoC to form heterostructure catalysts.
View Article and Find Full Text PDFDalton Trans
December 2024
Energy Materials Laboratory, Chemistry, School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.
This article reports the development of CuO|CuBiO photocathodes stabilized by protective layers of TiO, MgO, or NiO, with Pt or MoS nanoparticles serving as co-catalysts to facilitate H evolution. Most notably, this work demonstrates the first application of MgO as a protection/passivation layer for photocathodes in a water-splitting cell. All configurations of photocathodes were studied structurally, morphologically, and photoelectrochemically revealing that CuO|CuBiO|MgO|Pt photocathodes achieve the highest stable photocurrent densities of -200 μA cm for over 3 hours with a Faradaic efficiency of ∼90%.
View Article and Find Full Text PDFNano Lett
December 2024
School of Microelectronics, University of Science and Technology of China, Hefei 230026, China.
Due to the stochastic formation of conductive filaments (CFs), analog resistive random-access memory (RRAM) struggles to simultaneously achieve low variability, high linearity, and symmetry in conductance tuning, thus complicating on-chip training and limiting versatility of RRAM based computing-in-memory (CIM) chips. In this study, we present a simple and effective approach using monolayer (ML) MoS as interlayer to control the CFs formation in TiO switching layer. The limited S-vacancies (S) in MoSO interlayer can further confine the position, size, and quantity of CFs, resulting in a highly uniform and symmetrical switching behavior.
View Article and Find Full Text PDFRSC Adv
December 2024
Department of Chemical Engineering and Polymer Science, Shahjalal University of Science and Technology Sylhet 3100 Bangladesh
A high recombination rate is a major limiting factor in photocatalysis. Mitigating recombination through material engineering and photocatalyst optimization is key to enhancing photocatalytic performance. In this study, a heterostructure MoS/CdS nanocomposite was synthesized through a hydrothermal method in a Teflon-lined autoclave subjected to a temperature of 200 °C for 16 hours.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!