Despite the advance of on-skin sensors over the last decade, a sensor that solves simultaneously the critical issues for using in everyday life, such as stable performance in various environments, use over a long period of time, and repeated use by easy handling, has not yet been achieved. Here, we introduce an auxetic hygroscopic sensor that simultaneously meets all of the conditions. The auxetic structure with a negative Poisson's ratio matches with deformation of the skin in ankles; hence, a conformal contact between the sensor and the skin could be maintained during repeated movements. Sweat was absorbed in the auxetic electrode made of a hydrogel pattern coated with Ag nanowires and evaporated quickly; such hygroscopic characteristic led to excellent breathability. An electrocardiogram sensor and a haptic device were fabricated according to the proposed design for a sensor electrode. The sensors provide stable detecting performance in various environments, such as exercising, submersion in water, exposure to concentrated salt water, and continuous wearing for long time (7 days). Also, the sensors could be manually attached repeatedly without degrading the performance. This study provides new structural insights for on-skin sensors and presents future research directions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.8b13857 | DOI Listing |
AIChE J
December 2024
Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO 65211, USA.
Wearable heart monitors are crucial for early diagnosis and treatment of heart diseases in non-clinical settings. However, their long-term applications require skin-interfaced materials that are ultrasoft, breathable, antibacterial, and possess robust, enduring on-skin adherence-features that remain elusive. Here, we have developed multifunctional porous soft composites that meet all these criteria for skin-interfaced bimodal cardiac monitoring.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2024
Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC 27599.
Neuromuscular diseases pose significant health and economic challenges, necessitating innovative monitoring technologies for personalizable treatment. Existing devices detect muscular motions either indirectly from mechanoacoustic signatures on skin surface or via ultrasound waves that demand specialized skin adhesion. Here, we report a wireless wearable system, Laryngeal Health Monitor (LaHMo), designed to be conformally placed on the neck for continuously measuring movements of underlying muscles.
View Article and Find Full Text PDFSensors (Basel)
November 2024
Department of Systems Design Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
Skin cancer is the most common type of cancer in the United States and is estimated to affect one in five Americans. Recent advances have demonstrated strong performance on skin cancer detection, as exemplified by state of the art performance in the SIIM-ISIC Melanoma Classification Challenge; however, these solutions leverage ensembles of complex deep neural architectures requiring immense storage and computation costs, and therefore may not be tractable. A recent movement for TinyML applications is integrating Double-Condensing Attention Condensers (DC-AC) into a self-attention neural network backbone architecture to allow for faster and more efficient computation.
View Article and Find Full Text PDFACS Nano
November 2024
Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR 999077, P. R. China.
Electrospun nanofibers have become an important component in fabricating flexible electronic devices because of their permeability, flexibility, stretchability, and conformability to three-dimensional curved surfaces. This review delves into the advancements in adaptable and flexible electronic devices using electrospun nanofibers as the substrates and explores their diverse and innovative applications. The primary development of key substrates for flexible devices is summarized.
View Article and Find Full Text PDFActas Dermosifiliogr
October 2023
Unidad de Eczema de Contacto e Inmunoalergia. Servicio de Dermatología. Hospital Universitario San Cecilio, Granada, Spain. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!