Background/aims: The neutral, non-essential amino acid glycine has manifold functions and effects under physiological and pathophysiological conditions. Besides its function as a neurotransmitter in the central nervous system, glycine also exerts immunomodulatory effects and as an osmolyte it participates in cell volume regulation. During phagocytosis, glycine contributes to (local) cell volume-dependent processes like lamellipodium formation. Similar to the expansion of the lamellipodium we assume that glycine also affects the migration of microglial cells in a cell volume-dependent manner.

Methods: Mean cell volume (MCV) and cell migration were determined using flow cytometry and trans-well migration assays, respectively. Electrophysiological recordings of the cell membrane potential (Vmem) and swelling-dependent chloride (Cl-) currents (IClswell, VSOR, VRAC) were performed using the whole-cell patch clamp technique.

Results: In the murine microglial cell line BV-2, flow cytometry analysis revealed that glycine (5 mM) increases the MCV by ∼9%. The glycine-dependent increase in MCV was suppressed by the partial sodium-dependent neutral amino acid transporter (SNAT) antagonist MeAIB and augmented by the Cl- current blocker DCPIB. Electrophysiological recordings showed that addition of glycine activates a Cl- current under isotonic conditions resembling features of the swelling-activated Cl- current (IClswell). The cell membrane potential (Vmem) displayed a distinctive time course after glycine application; initially, glycine evoked a rapid depolarization mediated by Na+-coupled glycine uptake via SNAT, followed by a further gradual depolarization, which was fully suppressed by DCPIB. Interestingly, glycine significantly increased migration of BV-2 cells, which was suppressed by MeAIB, suggesting that SNAT is involved in the migration process of microglial cells.

Conclusion: We conclude that glycine acts as a chemoattractant for microglial cells presumably by a cell volume-dependent mechanism involving SNAT-mediated cell swelling.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000494646DOI Listing

Publication Analysis

Top Keywords

glycine
12
cell volume-dependent
12
cl- current
12
cell
11
migration microglial
8
bv-2 cells
8
snat-mediated cell
8
cell swelling
8
amino acid
8
cell volume
8

Similar Publications

Previous studies have suggested that ginsenoside Rg glycine ester derivative (RG) exhibits therapeutic potential in mitigating hypoxia. This study aimed to elucidate the potential mechanism of RG in hypoxia injury through a combined approach of metabolomics and network pharmacology. Initially, a CoCl-induced cell hypoxia model was established, and the therapeutic impact of RG on biochemical indices was evaluated.

View Article and Find Full Text PDF

Circulating glycine levels have been associated with reduced risk of coronary artery disease (CAD) in humans but these associations have not been observed in all studies. We evaluated whether the relationship between glycine levels and atherosclerosis was causal using genetic analyses in humans and feeding studies in mice. Serum glycine levels were evaluated for association with risk of CAD in the UK Biobank.

View Article and Find Full Text PDF

Synergistic Synbiotic-Containing and Fructo-Oligosaccharide Alleviate the Allergenicity of Mice Induced by Soy Protein.

Foods

January 2025

State Key Laboratory of Food Science and Resources, Nanchang University, Nanjing Dong Lu 235, Nanchang 330047, China.

Prebiotics and probiotics have key roles in the intervention and treatment of food allergies. This study assesses the effect of synergistic fructo-oligosaccharide (Lp-FOS) intervention using an allergic mouse model induced by soy protein. The results showed that Lp synergistic FOS significantly decreased clinical allergy scores, inhibited specific antibodies (IgE, IgG, and IgG1), IL-4, IL-6, and IL-17A levels, and increased IFN-γ and IL-10 levels.

View Article and Find Full Text PDF

Hyperuricemia, a disorder of purine metabolism associated with cardiovascular disease, gout, and kidney disease, can be alleviated by food-derived peptides. However, the precise mechanisms remain unclear, hindering their development. This study reviews uric acid-lowering peptides from various sources, focusing on two pathways: inhibiting uric acid production and promoting excretion.

View Article and Find Full Text PDF

Chemoprotective Mechanism of Sodium Thiosulfate Against Cisplatin-Induced Nephrotoxicity Is via Renal Hydrogen Sulfide, Arginine/cAMP and NO/cGMP Signaling Pathways.

Int J Mol Sci

January 2025

Department of Animal Experimentation, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra P.O. Box LG581, Ghana.

Cisplatin is a common and highly effective chemotherapeutic agent whose nephrotoxic side effect is well-characterized. Sodium thiosulfate (STS), an FDA-approved hydrogen sulfide (HS) donor drug, is emerging as a chemoprotective agent against cisplatin-induced nephrotoxicity (CIN). In this study, we investigated the chemoprotective mechanism of STS in a rat model of CIN.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!