Overhauser-enhanced Magnetic Resonance Imaging (OMRI) is a double resonance technique applied for oxygen imaging in aqueous samples and biological tissues. In this report, we present an improved OMRI approach of oxygen measurement using the single line "Finland" trityl spin probe. Compared to a traditional approach, we introduced an additional mechanism of leakage of spin polarization due to an interaction of a spin system with oxygen. The experimental comparison of the new approach with an oxygen-dependent leakage factor to a traditional approach performed in phantom samples in vitro, and mouse tumor model in vivo, shows improved accuracy of determination of oxygen and contrast agent concentrations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6289650 | PMC |
http://dx.doi.org/10.1016/j.jmr.2018.10.005 | DOI Listing |
J Phys Condens Matter
January 2025
Department of Physics, University of Kerala, Karyavattom 695581, Thiruvananthapuram, Kerala, India.
The effects of Na doping on the structure magnetic, electric, and magnetoelectric properties of GaFeOwere studied. Rietveld refinement of the XRD data reveals the formation of a single-phase trigonal structure with no impurity on Na doping up to 50% and a significant increase in lattice strain with doping. FTIR and Raman analysis further supported the phase purity of the samples.
View Article and Find Full Text PDFMagn Reson Med
January 2025
School of Medicine and Health, Institute for Diagnostic and Interventional Neuroradiology, Technical University of Munich, Munich, Germany.
Purpose: In brain tumors, disruption of the blood-brain barrier (BBB) indicates malignancy. Clinical assessment is qualitative; quantitative evaluation is feasible using the K leakage parameter from dynamic susceptibility contrast MRI. However, contrast agent-based techniques are limited in patients with renal dysfunction and insensitive to subtle impairments.
View Article and Find Full Text PDFQuant Imaging Med Surg
December 2024
Department of Radiology, the 8th Medical Center of PLA General Hospital, Beijing, China.
Background: Two post-processing methods of dynamic susceptibility contrast perfusion-weighted imaging (DSC-PWI), arterial input function (AIF) and gamma-variate fitting (GVF), can both derive cerebral blood flow (CBF). Moreover, AIF can provide T2* and T1 leakage indicators. This study aimed to compare the consistency of normalized CBF between different post-processing methods of DSC-PWI and arterial spin labeling (ASL) in gliomas, and take the quantitative metrics percentage of signal recovery (PSR) as a reference to verify the value of T2* and T1 leakage indicators in characterizing leakage effect and evaluating the grading of gliomas.
View Article and Find Full Text PDFMagn Reson Med
November 2024
Department of Radiology and Nuclear Medicine, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, Netherlands.
Purpose: Dynamic susceptibility contrast (DSC) MRI is commonly part of the clinical brain tumor imaging protocol. Usually, a preload of contrast agent is administered to minimize contrast-leakage T effects. However, recent studies have indicated that with adaptation of scan parameters (in particular, low flip angle), a preload is not required.
View Article and Find Full Text PDFQuantum computing in high-dimensional spaces holds promise for a plethora of applications, i.e., handling more intricate information and executing wider quantum operations, in complex quantum information technologies (QITs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!