The impact of digestion is essential to the understanding of milk as a drug delivery system for poorly water soluble drugs.

J Control Release

SAXS/WAXS beamline, Australian Synchrotron, ANSTO, 800 Blackburn Road, Clayton, VIC 3169, Australia.

Published: December 2018

AI Article Synopsis

  • Milk could be a promising lipid-based system for delivering poorly soluble drugs, but it hasn't been widely explored until now.
  • Research using time-resolved X-ray scattering shows that the digestion process of milk is essential for enhancing the solubility of the drug halofantrine.
  • The study emphasizes that understanding how milk lipids are digested is crucial for improving drug solubilization and absorption in the body.

Article Abstract

Milk has previously been considered as a potential lipid-based drug delivery system for poorly water soluble drugs but it has never gained significant attention. This is in part because relying on solubility in lipid-based formulations (in this case milk) does not provide a complete picture of the behavior of such systems upon digestion. Herein, we demonstrate using time resolved X-ray scattering that the digestion of milk is actually crucial to the solubilisation of a poorly water-soluble drug, halofantrine. Halofantrine was chosen because its behaviour in lipid-based formulations has been widely investigated and because of its close structural relationship to lumefantrine, an antimalarial drug of current interest for the treatment of paediatric malaria. The transformation of the drug from a crystalline solid form in suspension in milk, to a solubilised form as a direct consequence of lipolysis highlights that consideration of digestion of the milk lipids as a critical process that influences drug solubilisation and availability for absorption is vital.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6290171PMC
http://dx.doi.org/10.1016/j.jconrel.2018.10.027DOI Listing

Publication Analysis

Top Keywords

drug delivery
8
delivery system
8
system water
8
water soluble
8
soluble drugs
8
lipid-based formulations
8
digestion milk
8
milk
6
drug
6
impact digestion
4

Similar Publications

Nitroxide-Containing Poly(2-oxazoline)s Show Dual-Stimuli-Responsive Behavior and Radical-Trapping Activity.

Biomacromolecules

January 2025

Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia.

2,2,6,6-Tetramethylpiperidine--oxyl (TEMPO) structures possess potent antioxidant activities for biomedical applications. TEMPO immobilization on hydrophilic polymers is a powerful strategy to improve its properties; however, it is mostly limited to reversible-deactivation radical polymerizations or postpolymerization approaches. Here, we immobilized TEMPO units on a hydrophilic poly(2-ethyl-2-oxazoline) (PEtOx) backbone through cationic ring-opening polymerization (CROP) of a new 2-oxazoline monomer bearing a methoxy-protected TEMPO 2-substituent with 2-ethyl-2-oxazoline (EtOx).

View Article and Find Full Text PDF

Chitosan-Functionalized Fluorescent Calcium Carbonate Nanoparticle Loaded with Methotrexate: Future Theranostics for Triple Negative Breast Cancer.

ACS Biomater Sci Eng

January 2025

Nano 2 Micro Material Design Lab, Department of Chemical Engineering and Technology, IIT (BHU), Varanasi 221005, India.

Herein, fluorescent calcium carbonate nanoclusters encapsulated with methotrexate (Mtx) and surface functionalized with chitosan (25 nm) (@Calmat) have been developed for the imaging and treatment of triple-negative breast cancer (TNBC). These biocompatible, pH-sensitive nanoparticles demonstrate significant potential for targeted therapy and diagnostic applications. The efficacy of nanoparticles (NPs) was evaluated in MDA-MB-231 TNBC cell lines.

View Article and Find Full Text PDF

Is it possible to return to skiing following long-construct spinal deformity surgery?

Spine Deform

January 2025

Department of Orthopaedic Surgery, Columbia University Irving Medical Center, NewYork-Presbyterian Och Spine Hospital, New York, NY, 10032, USA.

Background: Alpine skiing requires flexibility, endurance, strength and rotational ability, which may be lost after long fusions to the pelvis for adult spinal deformity (ASD). ASD patients may worry about their ability to return to skiing (RTS) postoperatively. There is currently insufficient data for spine surgeons to adequately address questions about when, or if, their patients might RTS.

View Article and Find Full Text PDF

The modification of conventional liposomes for targeted antimicrobial delivery to treat infectious diseases.

Discov Nano

January 2025

Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa.

Some of the most crucial turning points in the treatment strategies for some major infectious diseases including AIDS, malaria, and TB, have been reached with the introduction of antimicrobials and vaccines. Drug resistance and poor effectiveness are key limitations that need to be overcome. Conventional liposomes have been explored as a delivery system for infectious diseases bioactives to treat infectious diseases to provide an efficient approach to maximize the therapeutic outcomes, drug stability, targetability, to reduce the side-effects of antimicrobials, and enhance vaccine performance where necessary.

View Article and Find Full Text PDF

Osteosarcoma (OS) is distinguished as a high-grade malignant tumor, characterized by rapid systemic metastasis, particularly to the lungs, resulting in very low survival rates. Understanding the complexities of tumor development and mutation is the need of the hour for the advancement of targeted therapies in cancer care. A significant innovation in this area is the use of nanotechnology, specifically nanoparticles, to tackle various challenges in cancer treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!