In recent years, mesoionic carbenes (MICs) are finding increasing use as building blocks of electro- and photoactive metal complexes. We present here a series of Ru and Os polypyridine complexes where one or two pyridyl moieties of the well-known tris(bipyridine) analogues are replaced by MICs. We probe the structural, electrochemical, UV-vis-NIR/electron paramagnetic resonance spectroelectrochemical, and photophysical properties of these complexes as a function of the number of MICs in them. Insights from theoretical studies are used to describe the electronic structures of the various redox states. Additionally, electron flux density calculations provide an idea of the flow of electron densities in the excited states of these molecules. This is the first time that such electron flux density calculations are used to probe the excited state properties of transition metal complexes. Our results conclusively prove that the incorporation of MICs into Ru/Os-polypyridyl complexes has a profound influence on the ground and the excited state redox potentials, the position of the emission bands, as well as on the lifetimes of the excited states. These observations might thus be useful for the generation of novel photocatalysts and photosensitizers for dye-sensitized-solar-cells based on MICs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.inorgchem.8b02551 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Freie Universitat Berlin, Chemistry and Biochemistry, Fabeckstraße 34-36, 14195, Berlin, GERMANY.
Neutral mesoionic carbenes (MICs) based on a 1,2,3-triazole core have had a strong impact on various branches of chemistry such as homogeneous catalysis, electrocatalysis, and photochemistry/photophysics. We present here the first general synthesis of anionic mesoionic carbenes (anMICs) based on a 1,2,3-triazole core and a borate backbone. The free anMIC is stable in solution under an inert atmosphere at low temperatures, and can be stored for several weeks.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35043 Marburg, Germany.
A new approach is introduced to control the metal-centred configuration of stereogenic-at-iron catalysts by utilizing axial ligand chirality, which becomes locked upon metal coordination. This strategy is applied to an iron catalyst containing two chelating -(2-pyridyl)-substituted triazol-5-ylidene mesoionic carbenes (MICs) resulting in a helical topology with a stereogenic iron centre.
View Article and Find Full Text PDFChemistry
January 2025
Department of Chemistry, University of Calcutta, 92-APC Road, Kolkata, 700009.
Cyclometalation offers a wide number of organometallic metallacycles showing diverse applications. However, such NHC complexes synthesized via an sp C-H bond activation are rare. An iridium(III) complex with a chiral mesoionic N-heterocyclic carbene (MIC) ligand, where the Ir forms an additional Ir-C bond via a regiospecific sp C-H bond activation at the N-methylbenzyl wingtip, was synthesized and characterized.
View Article and Find Full Text PDFDalton Trans
January 2025
Department of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria.
We report the synthesis of a series of molybdenum nitrido complexes supported by bis-phenolate N-heterocyclic and mesoionic carbenes (NHC & MIC). The reaction between MoN(OBu) and the corresponding azolium salts [H3L1]Cl and [H3L2]Cl (with L1 = bis-phenolate triazolylidene and L2 = bis-phenolate benzimidazolylidene) gives clean access to the corresponding NHC/MIC complexes 1-Cl and 2-Cl. Electrochemical investigations of these complexes showed that they can be reversibly reduced at potentials of -1.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen, 518055, China.
A 1,4,2-diazasilole containing a low-valent silicon atom has been synthesized employing a bulky imino N-heterocyclic carbene ligand. This molecular structure is characterized by a mesoionic CNSi five-membered ring, notable for its delocalized π electrons, intrinsic charge-separated zwitterionic properties, and a distinctly nucleophilic silicon center, culminating in 6π aromaticity. This compound manifests either mesoionic silylene or silylone characteristics upon coordination with transition metals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!