Rationally Designed Monodisperse Gd O /Bi S Hybrid Nanodots for Efficient Cancer Theranostics.

Small

Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.

Published: December 2018

Multifunctional nanotheranostic agents are of particular importance in the field of precise nanomedicine. However, a critical challenge remains in the rational fabrication of monodisperse multicomponent nanoparticles with enhanced multifunctional characteristics for efficient cancer theranostics. Here, a rational and facile synthesis of monodisperse Gd O /Bi S hybrid nanodots (Gd/Bi-NDs) is demonstrated as a multifunctional nanotheranostic agent using a albumin nanoreactor for computed tomography (CT)/photoacoustics (PA)/magnetic resonance (MR) imaging and simultaneous photothermal tumor ablation. Two nanoprecipitation reactions in one albumin nanoreactor are simultaneously conducted to generate ultrasmall Gd/Bi-NDs with both orthorhombic Bi S and cubic Gd O nanostructures. Their hybrid nanostructure generates distinctly enhanced longitudinal relaxivity in the spatially confined albumin nanocage as compared to monocomponent Gd O nanodots. Moreover, such hybrid nanodots possess multiple desirable characteristics including superior photobleaching resistance, efficient cellular uptake, preferable tumor accumulation, good in vivo clearance, and negligible acute toxicity, thereby leading to complementary PA/CT/MR imaging with spatial and anatomic characteristics, as well as effective photothermal tumor ablation without regrowth. These results represent a promising approach to fabricate monodisperse multicomponent nanotheranostic agents for efficient cancer theranostics.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.201802904DOI Listing

Publication Analysis

Top Keywords

hybrid nanodots
12
efficient cancer
12
cancer theranostics
12
monodisperse /bi
8
/bi hybrid
8
multifunctional nanotheranostic
8
nanotheranostic agents
8
monodisperse multicomponent
8
albumin nanoreactor
8
photothermal tumor
8

Similar Publications

Creating Single Atomic Coordination for Hypoxia-Resistant Pyroptosis Nano-Inducer to Boost Anti-Tumor Immunotherapy.

Adv Mater

January 2025

School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education), Fudan University, Shanghai, 201203, China.

General synthesis and mechanical understanding of type I nano-photosensitizers are of great importance for hypoxia-resistant pyroptosis inducers. Herein, a simple solvothermal treatment is developed to convert non-photosensitive small molecules (hemin) into uniform carbon nanodots (HNCDs) with strong type I photodynamic activity and red fluorescence emission. These HNCDs inherit the single atomic Fe-N center of hemin while creating sp-hybridized carbon surroundings, which synergistically modulated the energy level and electron transfer for converting the type II photodynamic process to type I.

View Article and Find Full Text PDF

High temperature QDs organization and re-crystallization in glass supported MgO QDs doped PMMA film.

Sci Rep

January 2025

Condensed Matter Physics & Nanoscience Research Laboratory, Department of Physics and Material Science, Madan Mohan Malaviya University of Technology, Gorakhpur, 273010, U.P, India.

Article Synopsis
  • The study focuses on creating composite films of poly (methylmethacrylate) (PMMA) blended with magnesium oxide quantum dots (MgO QDs) at varying concentrations, and the films were annealed at 130°C for different durations to observe changes in their properties.
  • Analysis revealed that the initial crystallinity of the PMMA films decreased with annealing but slightly improved with the diffusion and coalescence of MgO QDs, leading to the formation of larger clusters that influenced the films' structural properties.
  • The research highlights the significance of temperature and molecular forces in the evolution of the film's morphology and stability, demonstrating unique energy dissipation mechanisms and the complex interplay of inter- and intra
View Article and Find Full Text PDF

High-Temperature-Mediated Assembly of Polyoxometalate-Induced Ordered Carbonaceous Superstructures.

Angew Chem Int Ed Engl

December 2024

Advanced Materials and Catalysis Group, ZJU-Zhejiang Xinhua Low-Carbon Research Center, State Key Laboratory of Clean Energy Utilization, Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China.

Constructing hierarchical superstructures through one-step bottom-up synthesis poses significant challenges due to strong interactions between additives and micelles, which hinders the formation of heterogeneous configurations. Here, we propose a high-temperature-mediated method to weaken these interactions and manipulate the thermal instability of micellar templates. This approach successfully synthesizes hierarchical superstructures that combine a carbonaceous nanosheet substrate with polyoxometalate (POM)-induced, highly ordered discontinuous nanodots in a single preparation step.

View Article and Find Full Text PDF

Intracellular redox homeostasis and the type of exogenous Fenton reagent play crucial roles in determining the efficacy of chemodynamic therapy (CDT). Herein, we succeeded for the first time in preparing ultrasmall copper sulfide (CuS) nanodots (1-2 nm)-embedded hollow mesoporous organosilica nanoparticle (HMON), which served as an ideal nanocarrier to load both 3-amino-1,2,4-triazole (3-AT) and disulfiram (DSF) after folate-polyethylene glycol-silane (FA-PEG-Silane) modification. The as-prepared nanoplatform (3-AT/DSF@CuS/HMON-FA, denoted as ADCuSi-FA) was found to regulate intracellular redox homeostasis once internalized by 4T1 cells, showing rapid glutathione (GSH)-responsive 3-AT, DSF and Cu ions release.

View Article and Find Full Text PDF

Organosilica Nanodots Doped ZnO Cathode Interface Layer for Highly Efficient and Stable Inverted Polymer Solar Cells.

ACS Appl Mater Interfaces

December 2024

Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays,South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China.

Interfacial engineering is essential to achieve optical efficiencies and facilitate the industrialization of organic solar cells (OSCs). By doping organosilica nanodots (OSiNDs) into zinc oxide (ZnO), we have developed a hybrid ZnO/OSiNDs (4 wt %) cathode interface layer (CIL) that significantly enhances the overall performance of inverted organic solar cells (i-OSCs). In the PM6/BTP-eC9 active layer system, i-OSC devices with a ZnO/OSiNDs (4 wt %) CIL exhibit a superior power conversion efficiency (PCE) of 17.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!