Online Machine Learning Audiometry.

Ear Hear

Laboratory of Sensory Neuroscience and Neuroengineering, Department of Biomedical Engineering, Washington University in St. Louis, Missouri, USA.

Published: January 2020

Objectives: A confluence of recent developments in cloud computing, real-time web audio and machine learning psychometric function estimation has made wide dissemination of sophisticated turn-key audiometric assessments possible. The authors have combined these capabilities into an online (i.e., web-based) pure-tone audiogram estimator intended to empower researchers and clinicians with advanced hearing tests without the need for custom programming or special hardware. The objective of this study was to assess the accuracy and reliability of this new online machine learning audiogram method relative to a commonly used hearing threshold estimation technique also implemented online for the first time in the same platform.

Design: The authors performed air conduction pure-tone audiometry on 21 participants between the ages of 19 and 79 years (mean 41, SD 21) exhibiting a wide range of hearing abilities. For each ear, two repetitions of online machine learning audiogram estimation and two repetitions of online modified Hughson-Westlake ascending-descending audiogram estimation were acquired by an audiologist using the online software tools. The estimated hearing thresholds of these two techniques were compared at standard audiogram frequencies (i.e., 0.25, 0.5, 1, 2, 4, 8 kHz).

Results: The two threshold estimation methods delivered very similar threshold estimates at standard audiogram frequencies. Specifically, the mean absolute difference between threshold estimates was 3.24 ± 5.15 dB. The mean absolute differences between repeated measurements of the online machine learning procedure and between repeated measurements of the Hughson-Westlake procedure were 2.85 ± 6.57 dB and 1.88 ± 3.56 dB, respectively. The machine learning method generated estimates of both threshold and spread (i.e., the inverse of psychometric slope) continuously across the entire frequency range tested from fewer samples on average than the modified Hughson-Westlake procedure required to estimate six discrete thresholds.

Conclusions: Online machine learning audiogram estimation in its current form provides all the information of conventional threshold audiometry with similar accuracy and reliability in less time. More importantly, however, this method provides additional audiogram details not provided by other methods. This standardized platform can be readily extended to bone conduction, masking, spectrotemporal modulation, speech perception, etc., unifying audiometric testing into a single comprehensive procedure efficient enough to become part of the standard audiologic workup.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6476703PMC
http://dx.doi.org/10.1097/AUD.0000000000000669DOI Listing

Publication Analysis

Top Keywords

machine learning
28
online machine
20
learning audiogram
12
audiogram estimation
12
online
9
audiogram
8
accuracy reliability
8
threshold estimation
8
repetitions online
8
modified hughson-westlake
8

Similar Publications

Background: Recent research has revealed the potential value of machine learning (ML) models in improving prognostic prediction for patients with trauma. ML can enhance predictions and identify which factors contribute the most to posttraumatic mortality. However, no studies have explored the risk factors, complications, and risk prediction of preoperative and postoperative traumatic coagulopathy (PPTIC) in patients with trauma.

View Article and Find Full Text PDF

Aim: o point out how novel analysis tools of AI can make sense of the data acquired during OL and OC diagnosis and treatment in an effort to help improve and standardize the patient pathway for these disease.

Material And Methods: ultilizing programmed detection of heterogeneus OL and OC habitats through radiomics and correlate to imaging based tumor grading plus a literature review.

Results: new analysis pipelines have been generated for integrating imaging and patient demographic data and identify new multi-omic biomarkers of response prediction and tumour grading using cutting-edge artificial intelligence (AI) in OL and OC.

View Article and Find Full Text PDF

Background: Hematologic changes after splenectomy and hyperthermic intraperitoneal chemotherapy (HIPEC) can complicate postoperative assessment of infection. This study aimed to develop a machine-learning model to predict postoperative infection after cytoreductive surgery (CRS) and HIPEC with splenectomy.

Methods: The study enrolled patients in the national TriNetX database and at the Johns Hopkins Hospital (JHH) who underwent splenectomy during CRS/HIPEC from 2010 to 2024.

View Article and Find Full Text PDF

CDCG-UNet: Chaotic Optimization Assisted Brain Tumor Segmentation Based on Dilated Channel Gate Attention U-Net Model.

Neuroinformatics

January 2025

Department of Information Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Ramapuram, Chennai, 600089, India.

Brain tumours are one of the most deadly and noticeable types of cancer, affecting both children and adults. One of the major drawbacks in brain tumour identification is the late diagnosis and high cost of brain tumour-detecting devices. Most existing approaches use ML algorithms to address problems, but they have drawbacks such as low accuracy, high loss, and high computing cost.

View Article and Find Full Text PDF

The drug combination is an attractive approach for cancer treatment. PARP and kinase inhibitors have recently been explored against cancer cells, but their combination has not been investigated comprehensively. In this study, we used various drug combination databases to build ML models for drug combinations against brain cancer cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!