Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Bitter taste receptors (T2Rs) are a group of 25 chemosensory receptors expressed at significant levels in the human airways. In human airways, bitter taste receptor 14 (T2R14)-mediated physiological response in ameliorating obstructive airway disorders is an active area of investigation. Therefore, understanding various factors regulating the structure and function of T2R14 will be beneficial. We hypothesize that membrane lipids like cholesterol play a regulatory role in T2R14 signaling in airway cells. We confirmed the expression and signaling of T2R14 in primary human airway smooth muscle (HASM) cells and the human airway epithelial cell line (NuLi-1) using immunoblot analysis and intracellular calcium concentration mobilization experiments, respectively. Next, T2R14 signaling was examined in membrane cholesterol-altered environments by methyl-β-cyclodextrin or cholesterol oxidase treatments. In the cells analyzed, cholesterol depletion affected the agonist-induced T2R14 signaling, and cholesterol replenishment rescued its efficacy. An alternative approach for cholesterol depletion (with cholesterol oxidase pretreatment) also negatively affected the agonist potency at T2R14 in HASM cells. To understand the molecular mechanism of interaction between cholesterol and T2R14, we used site-directed mutagenesis coupled with functional assays and examined the role of putative cholesterol-binding motifs (CRAC and CARC) in T2R14. Functional characterization of wild-type and mutant T2R14 receptors suggests that amino acid residues K110, F236, and L239 are crucial in T2R14-cholesterol functional interaction. In conclusion, our results show that cholesterol influences the T2R14 signaling efficacy by forming direct interactions with the receptor and consequently plays a regulatory role in T2R14-mediated signaling in human airway cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajplung.00169.2018 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!