Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The results of this study indicate that the maize rhizosphere remains a reservoir for microbial strains with unique beneficial properties. The study sought to provide an indigenous Bacillus strain with a bioprotective potential to alleviate maize fusariosis in South Africa. We selected seven Bacillus isolates (MORWBS1.1, MARBS2.7, VERBS5.5, MOREBS6.3, MOLBS8.5, MOLBS8.6, and NWUMFkBS10.5) with biosuppressive effects against two maize fungal pathogens (Fusarium graminearum and Fusarium culmorum) based on 16S rDNA gene characterization and lipopeptide gene analysis. The PCR analysis revealed that lipopeptide genes encoding the synthesis of iturin, surfactin, and fengycin might be responsible for their antifungal activities. Few of the isolates also showed possible biosurfactant capability, and their susceptibility to known antibiotics is indicative of their eco-friendly attributes. In addition, in silico genomic analysis of our best isolate (Bacillus velezensis NWUMFkBS10.5) and characterization of its active metabolite with FTIR, NMR, and ESI-Micro-Tof MS confirmed the presence of valuable genes clusters and metabolic pathways. The versatile genomic potential of our Bacillus isolate emphasizes the continued relevance of Bacillus spp. in biological management of plant diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6562122 | PMC |
http://dx.doi.org/10.1002/mbo3.742 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!