In forensic drug analysis, extractive pretreatment is required prior to instrumental analysis to ensure successful detection of the target compounds. However, conventional extraction methods such as hydrophilic polymer-based solid-phase extraction and liquid-liquid extraction are unsuitable for an emerging class of new psychoactive substances, namely, synthetic cathinones, because they exhibit a lack of class selectivity and increased risk of target analyte decomposition during extraction. To address these issues, we describe a highly class-selective sample clean-up method for the extraction of synthetic cathinones from urine and whole blood samples, exploiting a molecularly imprinted polymer solid-phase extraction cartridge. In terms of the influence of the synthetic cathinone molecular structure on the extraction recovery, we showed that while longer alkyl side chains slightly reduced the extraction efficiency, substituent variation on the aromatic ring exerted no effect. Molecularly imprinted polymer solid-phase extraction of 11 synthetic cathinones from urine samples yielded higher recoveries than the two conventional extraction methods, and smaller matrix effect was observed than that with hydrophilic polymer-based solid-phase extraction. Molecularly imprinted polymer solid-phase extraction from whole blood samples gave recoveries comparable to those of urine samples. Therefore, the proposed method is applicable for the extraction and quantitative determination of synthetic cathinones in biological samples.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jssc.201800874 | DOI Listing |
Sci Rep
January 2025
Department of Nutritional Sciences, Auburn University, Auburn, AL, 36849, USA.
Oxidative stress (OS) refers to the disruption in the balance between free radical generation and antioxidant defenses, leading to potential tissue damage. Reactive oxygen species (ROS) can interact with biological components, triggering processes like protein oxidation, lipid peroxidation, or DNA damage, resulting in the generation of several volatile organic compounds (VOCs). Recently, VOCs provided new insight into cellular metabolism and can serve as potential biomarkers.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France.
Background: Considering the large diversity of chemicals present in the environment and the need to study their effects (alone or as mixtures), the development of high-throughput in vitro assays in line with the Replacement, Reduction, Refinement (3R) strategy is essential for chemical risk assessments.
Results: We developed a robust analytical workflow based on both low resolution tandem mass spectrometry (MS/MS) and high-resolution mass spectrometry (HRMS) to quantify 13 steroids in NCI-H295R cell culture medium, human plasma and serum. The workflow was validated by screening media from the NCI-H295R cell line exposed in dose-response experiments to 5 endocrine disruptors (EDs) such as bisphenol A, prochloraz, ketoconazole, atrazine and forskolin.
J Food Sci
January 2025
Department of Food Science, Cornell University, Ithaca, New York, USA.
This study was intended to provide a novel process that fills a knowledge gap in relation to the enhancement of pulses utilization. The primary goal was to develop an experimental framework for using a high-pressure supercritical fluid extruder (SCFX) as a continuous bioreactor to produce off-flavor reduced and functionally superior pulse flours and protein concentrates in a single step. The current study focused on using SCFX processing to remove off-flavor from pulse flour and protein concentrates, enhancing the quality, acceptability, and marketability of pulse-based products.
View Article and Find Full Text PDFBull Environ Contam Toxicol
January 2025
Centro de Investigaciones en Bioquímica Clínica e Inmunología-CIBICI, Facultad de Ciencias Químicas, CONICET, Universidad Nacional de Córdoba, Haya de La Torre Esq., Medina Allende, 5000, Córdoba, Argentina.
The co-occurrence of pesticides in aquatic ecosystems highlights the need for studies investigating their potential toxicity as mixtures to the aquatic biota. Well-designed studies are essential to assess the presence and toxicity of relevant pesticide mixtures, particularly those such as the chloroacetamide herbicide metolachlor (MET), the triazole fungicide epoxiconazole (EP) and the diamide anthranilic insecticide chlorantraniliprole (CAP), which have not been previously tested, and whose co-occurrence is possible in waters close to cultivated areas. A solid phase extraction ultra-performance liquid chromatography-tandem quadrupole mass spectrometry method was developed to quantify equivalent toxicity concentrations for CAP, EP, and MET in artificial freshwater during acute toxicity tests.
View Article and Find Full Text PDFAnal Methods
January 2025
Marine Elements and Marine Environment Division, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar 364 002, Gujarat, India.
Monitoring persistent organic pollutants (POPs) with endocrine-disrupting properties poses significant analytical challenges due to labor-intensive, costly, and environmentally unsustainable procedures. This study developed an efficient and robust approach for the simultaneous detection of diverse groups of semi-volatile organics in water and sediment samples using gas chromatography-tandem mass spectrometry (GC-MS). Two extraction methods were studied for determining POPs in water and sediments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!