Spatially-Resolved Multiple Metallopolymer Surfaces by Photolithography.

Chemistry

Macromolecular Architectures, Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstraße 18, 76128, Karlsruhe, Germany.

Published: December 2018

A tetrazole-based photoligation protocol for the spatially-resolved encoding of various defined metallopolymers onto solid surfaces is introduced. By using this approach, fabrication of bi- and trifunctional metallopolymer surfaces with different metal combinations were achieved. Specifically, α-ω-functional copolymers containing bipyridine as well as triphenylphosphine ligands were synthesized through reversible addition-fragmentation chain transfer (RAFT) polymerization, and subsequently metal loaded to afford metallopolymers of the widely-used metals gold, palladium, and platinum. Spatially-resolved surface attachment was achieved by means of a nitrile imine-mediated tetrazole-ene cycloaddition (NITEC) based photoligation protocol, exploiting tethered tetrazoles and metallopolymers equipped with a maleimide chain terminus. Metallopolymer coated surfaces with three different metals were prepared and characterized by time-of-flight secondary ion mass spectrometry (ToF-SIMS) and spatially-resolved X-ray photoelectron spectroscopy (XPS) mapping, supporting the preserved chemical composition of the surface-bound metallopolymers. The established photochemical technology platform for arbitrary spatially-resolved metallopolymer surface designs enables the patterning of multiple metallopolymers onto solid substrates. This allows for the assembly of designer metallopolymer substrates.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.201803966DOI Listing

Publication Analysis

Top Keywords

metallopolymer surfaces
8
photoligation protocol
8
metallopolymers solid
8
spatially-resolved
5
metallopolymer
5
metallopolymers
5
spatially-resolved multiple
4
multiple metallopolymer
4
surfaces
4
surfaces photolithography
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!