Cysteine Oxidative Dynamics Underlies Hypertension and Kidney Dysfunction Induced by Chronic Intermittent Hypoxia.

Adv Exp Med Biol

CEDOC, Centro de Estudos Doenças Crónicas, Nova Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal.

Published: July 2019

Previous data showed the lack of efficacy of an adrenoceptor antagonist to revert hypertension induced by chronic intermittent hypoxia (CIH). We hypothesized that, in addition to sympathetic activation, CIH may change the availability and dynamics of cysteine. Temporal variation in total cysteine and its fractions, free reduced, free oxidized and protein-bound (CysSSP), were measured in homogenates of kidney cortex and medulla of Wistar rats. Animals were exposed to CIH for 14, 21 and 60 days and cysteine fractions and fibronectin gene expression were assessed at these time-points. Two different phases in cysteine dynamics were identified. An early phase (14d) characterized by an increase in cysteine oxidation and CysSSP forms. Late events (>21d) were characterized by a global reduction in cysteine, minimum level of CysSSP and maximum overexpression of fibronectin in kidney cortex. In conclusion, cysteine dynamics is influenced by the duration of CIH exposure: first there is a cysteine disulfide stress-like adaptive response followed by a progressive loss of cysteine availability and a decrease in CysSSP fraction. Kidney fibrosis associated to an unbalance in cysteine dynamics might contribute to the inefficacy of available antihypertensive drugs in patients with delayed diagnosis of sleep apnea.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-3-319-91137-3_10DOI Listing

Publication Analysis

Top Keywords

cysteine dynamics
12
cysteine
11
induced chronic
8
chronic intermittent
8
intermittent hypoxia
8
cysteine fractions
8
kidney cortex
8
dynamics
5
cysteine oxidative
4
oxidative dynamics
4

Similar Publications

Structural Dynamics of the Ubiquitin Specific Protease USP30 in Complex with a Cyanopyrrolidine-Containing Covalent Inhibitor.

J Proteome Res

January 2025

Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, U.K.

Inhibition of the mitochondrial deubiquitinating (DUB) enzyme USP30 is neuroprotective and presents therapeutic opportunities for the treatment of idiopathic Parkinson's disease and mitophagy-related disorders. We integrated structural and quantitative proteomics with biochemical assays to decipher the mode of action of covalent USP30 inhibition by a small-molecule containing a cyanopyrrolidine reactive group, . The inhibitor demonstrated high potency and selectivity for endogenous USP30 in neuroblastoma cells.

View Article and Find Full Text PDF

Amycolatopsis sp. BJA-103 was isolated for its exceptional feather-degradation capability, leading to the purification, cloning, and heterologous expression of the keratinase enzyme, KER0199. Sequence analysis places KER0199 within the S8 protease family, revealing <60 % sequence similarity to known proteases.

View Article and Find Full Text PDF

Two-dimensional infrared (2D IR) spectroscopy is a powerful technique for measuring molecular heterogeneity and dynamics with a high spatiotemporal resolution. The methods can be applied to characterize specific residues of proteins by incorporating frequency-resolved vibrational labels. However, the time scale of dynamics that 2D IR spectroscopy can measure is limited by the vibrational label's excited-state lifetime due to the decay of 2D IR absorption bands.

View Article and Find Full Text PDF

Background: Erectile dysfunction is a condition with a rapidly increasing prevalence globally with a strong correlation to the increase in obesity and cardiovascular disease rates.

Aim: The aim of the current study is to investigate the potential role of tubacin, a histone deacetylase 6 (HDAC6) inhibitor, in restoring erectile function in a hypercholesterolemia-induced endothelial dysfunction model.

Methods: Thirty-nine male C57Bl/6 J mice were divided into 3 groups.

View Article and Find Full Text PDF

Inward rectifying potassium (Kir) channels play a critical role in maintaining the resting membrane potential and cellular homeostasis. The high-resolution crystal structure of homotetrameric KirBac1.1 in detergent micelles provides a snapshot of the closed state.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!