Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Polymeric scaffolds have played important roles in biomedical applications due to their potentially practical performance such as delivery of bioactive components and/or regenerative cells. These materials were well-designed to encapsulate bioactive molecules or/and nanoparticles for enhancing their performance in tissue regeneration and drug delivery systems. In the study, several multifunctional nanocomposite hydrogel and polymeric nano(micro)particles-electrosprayed platforms were described from their fabrication methods and structural characterizations to potential applications in the mentioned fields. Regarding to their described performance, these multifunctional nanocomposite biomaterials could pay many ways for further studies that enables them apply in clinical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-981-13-0947-2_13 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!