A general distribution of tandem repeats (TRs) in the wheat genome was predicted and a new web page combined with fluorescence in situ hybridization experiments, and the newly developed Oligo probes will improve the resolution for wheat chromosome identification. Comprehensive sequence analysis of tandem repeats (TR) in the wheat reference genome permits discovery and application of TRs for chromosome identification. Genome-wide localization of TRs was identified in the reference sequences of Chinese Spring using Tandem Repeat Finder (TRF). A database of repeats unit size, array number, and physical coverage length of TRs in the wheat genome was built. The distribution of TRs occupied 3-5% of the wheat chromosomes, with non-random dispersal across the A, B, and D genomes. Three classes of TRs surrounding the predicted genes were compared. An optimized computer-assisted website page B2DSC was constructed for the general distribution and chromosomally enriched zones of TR sequences to be displayed graphically. The physical distribution of predicted TRs in the wheat genome by B2DSC matched well with the corresponding hybridization signals obtained with fluorescence in situ hybridization (FISH). We developed 20 oligonucleotide probes representing 20-60 bp lengths of high copy number of TRs and verified by FISH. An integrated physical map of TR-Oligo probes for wheat chromosome identification was constructed. Our results suggest that the combination of both molecular cytogenetics and genomic research will significantly benefit wheat breeding through chromosome manipulation and engineering.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00425-018-3033-4DOI Listing

Publication Analysis

Top Keywords

wheat genome
16
chromosome identification
16
tandem repeats
12
trs wheat
12
wheat
9
repeats wheat
8
general distribution
8
trs
8
fluorescence situ
8
situ hybridization
8

Similar Publications

Pathogens manipulate host physiology through the secretion of virulence factors (effectors) to invade and proliferate on the host. The molecular functions of effectors inside plant hosts have been of interest in the field of molecular plant-microbe interactions. Obligate biotrophic pathogens, such as rusts and powdery mildews, cannot proliferate outside of plant hosts.

View Article and Find Full Text PDF

Wheat is one of the most extensively grown crops in the world; however, its productivity is reduced due to salinity. This study focused on millimeter wave (MMW) irradiation to clarify the salt-stress tolerance mechanism in wheat. In the present study, wheat-root growth, which was suppressed to 77.

View Article and Find Full Text PDF

A Unique Expression Profile Responding to Powdery Mildew in Wild Emmer Wheat D430.

Int J Mol Sci

December 2024

Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai 264005, China.

Powdery mildew, caused by f. sp. (), is a disease that seriously harms wheat production and occurs in all wheat-producing areas around the world.

View Article and Find Full Text PDF

The gene family is a highly conserved transcription factor that plays a crucial role in regulating plant growth, development, and responses to various stresses. Despite extensive studies in multiple plants, there has been a dearth of focused and systematic analysis on NF-YA genes in wheat grains. In this study, we carried out a comprehensive bioinformatics analysis of the gene family in wheat, using the latest genomic data from the Chinese Spring.

View Article and Find Full Text PDF

Zebularine-treated wheat uncovered a phenotype with characteristics of an epigenetically regulated trait, but major chromosomal aberrations, not DNA methylation changes, are the cause, making zebularine unsuitable for epigenetic breeding. Breeding to identify disease-resistant and climate-tolerant high-yielding wheats has led to yield increases over many years, but new hardy, higher yielding varieties are still needed to improve food security in the face of climate change. Traditional breeding to develop new cultivars of wheat is a lengthy process taking more than seven years from the initial cross to cultivar release.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!