PIWI-interacting RNAs (piRNAs) are a class of small noncoding RNAs that guard animal genomes against mutation by silencing transposons. In addition, recent studies have reported that piRNAs silence various endogenous genes. Tens of thousands of distinct piRNAs made in animals do not pair well to transposons and currently the functions and targets of piRNAs are largely unexplored. piRTarBase provides a user-friendly interface to access both predicted and experimentally identified piRNA targeting sites in Caenorhabditis elegans. The user can input genes of interest and retrieve a list of piRNA targeting sites on the input genes. Alternatively, the user can input a piRNA and retrieve a list of its mRNA targets. Additionally, piRTarBase integrates published mRNA and small RNA sequencing data, which will help users identify biologically relevant targeting events. Importantly, our analyses suggest that the piRNA sites found by both predictive and experimental approaches are more likely to exhibit silencing effects on their targets than each method alone. Taken together, piRTarBase offers an integrative platform that will help users to identify functional piRNA target sites by evaluating various information. piRTarBase is freely available for academic use at http://cosbi6.ee.ncku.edu.tw/piRTarBase/.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6323935 | PMC |
http://dx.doi.org/10.1093/nar/gky956 | DOI Listing |
Mob DNA
January 2025
School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
Background: Piwi-interacting RNAs (piRNA)s are non-coding small RNAs that post-transcriptionally affect gene expression and regulation. Through complementary seed region binding with transposable elements (TEs), piRNAs protect the genome from transposition. A tool to link piRNAs with complementary TE targets will improve our understanding of the role of piRNAs in genome maintenance and gene regulation.
View Article and Find Full Text PDFJ Biol Chem
January 2025
Department of Biochemistry and Molecular Biology and Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA. Electronic address:
Transposable element (TE) silencing in the germline is crucial for preserving genome integrity; its absence results in sterility and diminished developmental robustness. The Piwi-interacting RNA (piRNA) pathway is the primary small non-coding RNA mechanism by which TEs are silenced in the germline. Three piRNA binding proteins promote the piRNA pathway function in the germline- P-element-induced wimpy testis (Piwi), Aubergine (Aub), and Argonaute 3 (Ago3).
View Article and Find Full Text PDFGenomics
January 2025
Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China; Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, Hubei 430071, China. Electronic address:
Background: Current endometrial receptivity analysis is invasive, preventing embryo transfer during the biopsy cycle. This study aims to screen serum sncRNAs as non-invasive biomarkers for ERA tests.
Methods: The study included 12 infertile patients undergoing IVF-ET and ERA, whose serum samples were collected for high-energy sequencing technology to detect sncRNA expression profiles.
Noncoding RNA
December 2024
Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA.
RNA metabolism is focused on RNA molecules and encompasses all the crucial processes an RNA molecule may or will undergo throughout its life cycle. It is an essential cellular process that allows all cells to function effectively. The transcriptomic landscape of a cell is shaped by the processes such as RNA biosynthesis, maturation (RNA processing, folding, and modification), intra- and inter-cellular transport, transcriptional and post-transcriptional regulation, modification, catabolic decay, and retrograde signaling, all of which are interconnected and are essential for cellular RNA homeostasis.
View Article and Find Full Text PDFGenome Biol
January 2025
Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, UK.
Background: East African cichlid fishes have diversified in an explosive fashion, but the (epi)genetic basis of the phenotypic diversity of these fishes remains largely unknown. Although transposable elements (TEs) have been associated with phenotypic variation in cichlids, little is known about their transcriptional activity and epigenetic silencing. We set out to bridge this gap and to understand the interactions between TEs and their cichlid hosts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!