A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Proteoliposome Engineering with Cell-Free Membrane Protein Synthesis: Control of Membrane Protein Sorting into Liposomes by Chaperoning Systems. | LitMetric

Integral membrane proteins (IMPs) modulate key cellular processes; their dysfunctions are closely related to disease. However, production of IMPs in active conformations for further study is hindered by aggregation and toxicity in living expression systems. IMPs are therefore produced in cell-free systems employing liposome chaperoning, but membrane integration of the nascent IMPs is suboptimal and orientation of the integrated proteins remains uncontrollable. Thus, an artificial membrane protein sorting system is developed, based on polyhistidine/nickel-chelate affinity, combined with cell-free membrane protein synthesis. Its proof of concept is demonstrated with a N-terminal hexahistadine-fused conexin-43 (NHis-Cx43) model IMP. Nickel-chelating liposomes efficiently incorporate twofold newly synthesized NHis-Cx43 compared with Cx43. NHis-Cx43, when synthesized in this system, forms dye-permeable hemichannels, similar to plasma membrane pores formed by Cx43 in cells. The topology of incorporated NHis-Cx43 indicates two orientations in the liposomal membranes. However, NHis-Cx43 orientation is controlled, resulting in single topology, by combination of the natural molecular chaperone DnaKJE. Successful synthesis and at least 4.5-fold increase lipid incorporation are also achieved with three other NHis-fused IMPs, including α-helix and β-barrel IMPs. Overall, this simple membrane protein sorting system is usable combined with molecular chaperones to prepare proteoliposomes for many applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6193158PMC
http://dx.doi.org/10.1002/advs.201800524DOI Listing

Publication Analysis

Top Keywords

membrane protein
20
protein sorting
12
membrane
8
cell-free membrane
8
protein synthesis
8
sorting system
8
imps
6
protein
5
nhis-cx43
5
proteoliposome engineering
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!