Neural Correlate of Transition Violation and Deviance Detection in the Songbird Auditory Forebrain.

Front Syst Neurosci

Behavior and Systems Neuroscience, Psychology Department, Rutgers, the State University of New Jersey, New Brunswick, NJ, United States.

Published: October 2018

Deviants are stimuli that violate one's prediction about the incoming stimuli. Studying deviance detection helps us understand how nervous system learns temporal patterns between stimuli and forms prediction about the future. Detecting deviant stimuli is also critical for animals' survival in the natural environment filled with complex sounds and patterns. Using natural songbird vocalizations as stimuli, we recorded multi-unit and single-unit activity from the zebra finch auditory forebrain while presenting rare repeated stimuli after regular alternating stimuli (alternating oddball experiment) or rare deviant among multiple different common stimuli (context oddball experiment). The alternating oddball experiment showed that neurons were sensitive to rare repetitions in regular alternations. In the absence of expectation, repetition suppresses neural responses to the 2nd stimulus in the repetition. When repetition violates expectation, neural responses to the 2nd stimulus in the repetition were stronger than expected. The context oddball experiment showed that a stimulus elicits stronger neural responses when it is presented infrequently as a deviant among multiple common stimuli. As the acoustic differences between deviant and common stimuli increase, the response enhancement also increases. These results together showed that neural encoding of a stimulus depends not only on the acoustic features of the stimulus but also on the preceding stimuli and the transition patterns between them. These results also imply that the classical oddball effect may result from a combination of repetition suppression and deviance enhancement. Classification analyses showed that the difficulties in decoding the stimulus responsible for the neural responses differed for deviants in different experimental conditions. These findings suggest that learning transition patterns and detecting deviants in natural sequences may depend on a hierarchy of neural mechanisms, which may be involved in more complex forms of auditory processing that depend on the transition patterns between stimuli, such as speech processing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6190688PMC
http://dx.doi.org/10.3389/fnsys.2018.00046DOI Listing

Publication Analysis

Top Keywords

oddball experiment
16
neural responses
16
stimuli
12
common stimuli
12
transition patterns
12
deviance detection
8
auditory forebrain
8
patterns stimuli
8
alternating oddball
8
deviant multiple
8

Similar Publications

Measuring Bound Attention During Complex Liver Surgery Planning: Feasibility Study.

JMIR Form Res

January 2025

University Hospital for Visceral Surgery, PIUS-Hospital, Department for Human Medicine, Faculty VI, University of Oldenburg, Oldenburg, Germany.

Background: The integration of advanced technologies such as augmented reality (AR) and virtual reality (VR) into surgical procedures has garnered significant attention. However, the introduction of these innovations requires thorough evaluation in the context of human-machine interaction. Despite their potential benefits, new technologies can complicate surgical tasks and increase the cognitive load on surgeons, potentially offsetting their intended advantages.

View Article and Find Full Text PDF

Cost-Reference Particle Filter-Based Method for Constructing Effective Brain Networks: Application in Optically Pumped Magnetometer Magnetoencephalography.

Bioengineering (Basel)

December 2024

Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, 37 Xueyuan Rd., Haidian District, Beijing 100083, China.

Optically pumped magnetometer magnetoencephalography (OPM-MEG) represents a novel method for recording neural signals in the brain, offering the potential to measure critical neuroimaging characteristics such as effective brain networks. Effective brain networks describe the causal relationships and information flow between brain regions. In constructing effective brain networks using Granger causality, the noise in the multivariate autoregressive model (MVAR) is typically assumed to follow a Gaussian distribution.

View Article and Find Full Text PDF

Background/objectives: Previous studies have examined the role of working memory in cognitive tasks such as syntactic, semantic, and phonological processing, thereby contributing to our understanding of linguistic information management and retrieval. However, the real-time processing of phonological information-particularly in relation to suprasegmental features like tone, where its contour represents a time-varying signal-remains a relatively underexplored area within the framework of Information Processing Theory (IPT). This study aimed to address this gap by investigating the real-time processing of similar tonal information by native Cantonese speakers, thereby providing a deeper understanding of how IPT applies to auditory processing.

View Article and Find Full Text PDF

The power of sound: Exploring the auditory influence on visual search efficiency.

Cognition

December 2024

School of Psychology, Liaoning Collaborative Innovation Center of Children and Adolescents Healthy Personality Assessment and Cultivation, Liaoning Normal University, Dalian 116029, China; School of Foreign Languages, Ningbo University of Technology, Ningbo 315211, China. Electronic address:

In a dynamic visual search environment, a synchronous and meaningless auditory signal (pip) that corresponds with a change in a visual target promotes the efficiency of visual search (pop out), which is known as the pip-and-pop effect. We conducted three experiments to investigate the mechanism of the pip-and-pop effect. Using the eye movement technique, we manipulated the interval rhythm (Exp.

View Article and Find Full Text PDF

When a spiky object is occluded, we expect its spiky features to continue behind the occluder. Although many real-world objects contain complex features, it is unclear how more complex features are amodally completed and whether this process is automatic. To investigate this issue, we created pairs of displays with identical contour edges up to the point of occlusion, but with occluded portions exchanged.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!