Epitope-specific CD4+ T lymphocytes were magnetically enriched using ferromagnetic Ni and Fe-Au nanowires coated with a monomer containing a major histocompatibility complex class II-bound peptide epitope (pMHCII). The enriched lymphocytes were subsequently quantified using fluorescence-activated cell sorting (FACS). This was the first use of magnetic nanowires for cell sorting using FACS, and improvements in both specificity and fluorescent signal strength were predicted due to higher particle moments and lengths than conventional paramagnetic beads. Three different types of nanowires (Ni, Fe with Au tip and Fe-Au multilayers) were made by electrodeposition. Ni nanowires separated fewer T cells than Au tipped Fe nanowires, likely because Ni has a lower magnetic moment than Fe. Fe-Au multilayer nanowires separated more T cells than Au-tipped Fe nanowires because there was more monomer per nanowire. Also, increasing the amount of monomer increased the number of CD4+ cells separated. Compared to conventional paramagnetic beads, the nanowires had lower specificity for CD4+ T cells, but had stronger fluorescent signals due to more fluorophores per particle. This results in broader FACS baseline separation between the positive and negative cells, which is useful to detect T cells, even those with lower binding affinity for pMHCII ligands.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6200781 | PMC |
http://dx.doi.org/10.1038/s41598-018-33910-0 | DOI Listing |
PLoS One
January 2025
College of Physics and Electronic Engineering, Hainan Normal University, HaiKou, China.
We have successfully prepared a significant number of nanowires from non-toxic silicon sources. Compared to the SiO silicon source used in most other articles, our preparation method is much safer. It provides a simple and harmless new preparation method for the preparation of silicon nanowires.
View Article and Find Full Text PDFNatl Sci Rev
January 2025
Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China.
The noise equivalent temperature difference (NETD) indicates the minimum temperature difference resolvable by using an infrared detector. The lower the NETD, the better the sensor can register small temperature differences. In this work, we proposed a strategy to achieve a high temperature resolution using a superconducting nanowire single-photon detector (SNSPD) with ultra-high sensitivity.
View Article and Find Full Text PDFNanotechnology
January 2025
IEMN, IEMN, Avenue Poincaré, CS60069, Villeneuve-d'Ascq, 59655, FRANCE.
InSb is a material of choice for infrared as well as spintronic devices but its integration on large lattice mismatched semi-insulating III-V substrates has so far altered its exceptional properties. Here, we investigate the direct growth of InSb on InP(111)B substrates with molecular beam epitaxial growth. Despite the lack of a thick metamorphic buffer layer for accommodation, we show that quasi-continuous thin films can be achieved using a very high Sb/In flux ratio.
View Article and Find Full Text PDFCell Chem Biol
January 2025
Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA; Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06511, USA. Electronic address:
Microbial extracellular electron transfer (EET) drives various globally important environmental phenomena and has biotechnology applications. Diverse prokaryotes have been proposed to perform EET via surface-displayed "nanowires" composed of multi-heme cytochromes. However, the mechanism that enables only a few cytochromes to polymerize into nanowires is unclear.
View Article and Find Full Text PDFFaraday Discuss
January 2025
Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, 41350, Sweden.
The aim of this paper is to overview the meeting on New horizons in nanoelectrochemistry held at Nanjing University in China in October 2024 and to give some perspective to the work presented. This paper is based on my summary talk and breaks down the subjects in the following areas of nanoelectrochemistry presented at the meeting: nanowires, nanonets, and nanoarrays; nanopores; nanopipettes; spectroelectrochemistry, scanning ion-conductance microscopy and light-active processes at nanointerfaces; scanning electrochemical microscopy and scanning electrochemical cell microscopy; and nanosensors. I end with some discussion of online meetings and where the field might go including artificial intelligence and by asking AI to define the challenges and future of nanoelectrochemistry.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!