A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Indoor Temperature Prediction in an IoT Scenario. | LitMetric

Indoor Temperature Prediction in an IoT Scenario.

Sensors (Basel)

Department of Electrical and Computer Engineering, Faculty of Science and Technology, Universidade Nova de Lisboa, 2829-516 Lisboa, Portugal.

Published: October 2018

One of the hottest topics being researched in the field of IoT relates to making connected devices smarter, by locally computing relevant information and integrating data coming from other sensors through a local network. Such works are still in their early stages either by lack of access to data or, on the other hand, by the lack of simple test cases with a clear added value. This contribution aims at shading some light on how knowledge can be obtained, using a simple use case. It focuses on the feasibility of having a home refrigerator performing temperature forecasts, using information provided by both internal and external sensors. The problem is reviewed for both its potential applications and to compare the use of different algorithms, from simple linear correlations to ARIMA models. We analyse the precision and computational cost using real data from a refrigerator. Results indicate that small average errors, down to ≈0.09 ∘ C, can be obtained. Lastly, it is devised how can the scenario be improved, and, most importantly, how this work can be extended in the future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6264091PMC
http://dx.doi.org/10.3390/s18113610DOI Listing

Publication Analysis

Top Keywords

indoor temperature
4
temperature prediction
4
prediction iot
4
iot scenario
4
scenario hottest
4
hottest topics
4
topics researched
4
researched field
4
field iot
4
iot relates
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!