Extreme resistance (ER) is a type of -gene-mediated resistance that rapidly induces a symptomless resistance phenotype, which is different from the phenotypical -resistance manifested by the programmed cell death, accumulation of reactive oxygen species, and hypersensitive response. The gene in soybean cultivar L29 is responsible for ER against the avirulent strain G5H of soybean mosaic virus (SMV), but is ineffective against the virulent strain G7H. Rsv3-mediated ER is achieved through the rapid accumulation of callose, which arrests SMV-G5H at the point of infection. Callose accumulation, however, may not be the lone mechanism of this ER. Analyses of RNA-seq data obtained from infected soybean plants revealed a rapid induction of the abscisic acid pathway at 8 h post infection (hpi) in response to G5H but not to G7H, which resulted in the down-regulation of transcripts encoding β-1,3 glucanases that degrade callose in G5H-infected but not G7H-infected plants. In addition, parts of the autophagy and the small interfering (si) RNA pathways were temporally up-regulated at 24 hpi in response to G5H but not in response to G7H. The jasmonic acid (JA) pathway and many WRKY factors were clearly up-regulated only in G7H-infected plants. These results suggest that ER against SMV-G5H is achieved through the quick and temporary induction of ABA, autophagy, and the siRNA pathways, which rapidly eliminate G5H. The results also suggest that suppression of the JA pathway in the case of G5H is important for the Rsv3-mediated ER.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6267276 | PMC |
http://dx.doi.org/10.3390/v10110581 | DOI Listing |
Sensors (Basel)
December 2024
Faculty of Transport, Warsaw University of Technology, 00-665 Warsaw, Poland.
Are the regulations relating to electromagnetic compatibility (EMC) sufficient to ensure the safety of all autonomy systems? EMC is one of the critical factors influencing the proper functioning of a vehicle and its safety. However, the safety of autonomous vehicles from the perspective of EMC has not been comprehensively researched to date. The purpose of this article is to evaluate whether the currently imposed requirements are adequate.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China.
The heat shock protein 70 (HSP70) family plays an important role in the growth and development of lettuce and in the defense response to high-temperature stress; however, its bioinformatics analysis in lettuce has been extremely limited. Genome-wide bioinformatics analysis methods such as chromosome location, phylogenetic relationships, gene structure, collinearity analysis, and promoter analysis were performed in the gene family, and the expression patterns in response to high-temperature stress were analyzed. The mechanism of in heat resistance in lettuce was studied by virus-induced gene silencing (VIGS) and transient overexpression techniques.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore.
Host defense antimicrobial peptides (AMPs) are promising lead molecules with which to develop antibiotics against drug-resistant bacterial pathogens. Thanatin, an inducible antimicrobial peptide involved in the host defense of insects, is gaining considerable attention in the generation of novel classes of antibiotics. Thanatin or thanatin-based analog peptides are extremely potent in killing bacterial pathogens in the Enterobacteriaceae family, including drug-resistant strains of and .
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Polytechnic School of Engineering, Campus de Viesques, University of Oviedo, 33203 Gijón, Spain.
In some occasions, outdoor steel structures like wind towers, bridges, winter sports facilities, and so on are subjected to extreme environmental conditions with the presence of ice and/or with below-zero temperatures. Sometimes in these situations, surface protection of the steel structure is usually designed using hot-dip galvanizing to improve its durability. In these special circumstances, the structure's connections are also exposed to adverse climatic agents.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, College of Mechanical and Electrical Engineering, Changchun University of Science and Technology, Changchun 130022, China.
Zircaloy-4 is extensively used in nuclear reactors as fuel element cladding and core structural material. However, the safety concerns post-Fukushima underscore the need for further enhancing its high-temperature and high-pressure water-side corrosion resistance. Therefore, this study aimed to investigate the effects of high-current pulsed electron beam (HCPEB) irradiation on the microstructures and corrosion resistance of Zircaloy-4, with the goal of improving its performance in nuclear applications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!