Melanoma is one of the most highly mutated cancer types. To identify functional drivers of melanoma, we searched for cross-species conserved mutations utilizing a mouse melanoma model driven by loss of PTEN and CDKN2A, and identified mutations in , and . encodes the SHP2 protein tyrosine phosphatase that activates the RAS/RAF/MAPK pathway. Although is an oncogene in leukemia, lung, and breast cancers, its roles in melanoma are not clear. In this study, we found that PTPN11 is frequently activated in human melanoma specimens and cell lines and is required for full RAS/RAF/MAPK signaling activation in wild-type (either mutant or wild-type) melanoma cells. played oncogenic roles in melanoma by driving anchorage-independent colony formation and tumor growth. In and -null mice, -inducible and melanocyte-specific PTPN11 expression significantly enhanced melanoma tumorigenesis. Melanoma cells derived from this mouse model showed doxycycline-dependent tumor growth in nude mice. Silencing PTPN11 expression by doxycycline withdrawal caused regression of established tumors by induction of apoptosis and senescence, and suppression of proliferation. Moreover, the PTPN11 inhibitor (SHP099) also caused regression of -mutant melanoma. Using a quantitative tyrosine phosphoproteomics approach, we identified GSK3α/β as one of the key substrates that were differentially tyrosine-phosphorylated in these experiments modulating PTPN11. This study demonstrates that PTPN11 plays oncogenic roles in melanoma and regulates RAS and GSK3β signaling pathways. IMPLICATIONS: This study identifies PTPN11 as an oncogenic driver and a novel and actionable therapeutic target for wild-type melanoma.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6386183 | PMC |
http://dx.doi.org/10.1158/1541-7786.MCR-18-0777 | DOI Listing |
J Transl Med
January 2025
Department of Gynecology, The Fourth Hospital of Hebei Medical University, No.12 Jiankang Road, Shijiazhuang, 050000, Hebei, China.
Background: Immune cells within tumor tissues play important roles in remodeling the tumor microenvironment, thus affecting tumor progression and the therapeutic response. The current study was designed to identify key markers of plasma cells and explore their role in high-grade serous ovarian cancer (HGSOC).
Methods: We utilized single-cell sequencing data from the Gene Expression Omnibus (GEO) database to identify key immune cell types within HGSOC tissues and to extract related markers via the Seurat package.
Sci Rep
January 2025
Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, No. 4110 Yatai Street, Nanguan District, Changchun, Jilin, 130000, China.
Polycystic ovary syndrome (PCOS) is a complex gynecological endocrinological condition that significantly impacts women's fertility during their reproductive lifespan. The causes of PCOS are multifaceted, and its pathogenesis is not yet clear. This study established a rat model of PCOS and, in conjunction with clinical samples and database data, analysed the role of claudin 11 (CLDN11) in follicular granulosa cells (GCs) in regulating the proliferation of GCs.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University of Chinese Medicine, Nanjing, 210000, Jiangsu, China.
Gastric cancer (GC) is a prevalent malignant tumor of the digestive system that is often diagnosed at advanced stages owing to inconspicuous early symptoms and a lack of specific examination methods. Effective treatment of advanced stages remains challenging, emphasizing the need for new therapeutic targets. Metabolic reprogramming, a hallmark of tumors, plays a pivotal role in tumor progression, immune evasion, and immune surveillance.
View Article and Find Full Text PDFTrends Cancer
January 2025
Institute of Oncology Research (IOR), Bellinzona Institutes of Science (BIOS+), Bellinzona, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland. Electronic address:
Cancer development is driven by mutations, yet tumor-causing mutations only lead to tumor formation within specific cellular contexts. The reasons why certain mutations trigger malignant transformation in some contexts but not others remain often unclear. Both intrinsic and extrinsic factors play a key role in driving carcinogenesis by leading the cells toward a state of 'oncogenic competence'.
View Article and Find Full Text PDFJ Adv Res
January 2025
Department of Urology, Center for Regeneration and Aging, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu 322000 China. Electronic address:
Introduction: Extrachromosomal circular DNA (eccDNA) plays significant roles in cancer progression and prognosis. However, it remains unclear whether cell-free eccDNA, considered more stable than linear DNA, possesses cancer-specific genomic features. Furthermore, the biogenesis and function of eccDNAs are not yet fully understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!