Rare diseases are classified as such when their prevalence is 1:2000 or lower, but even if each of them is so infrequent, altogether more than 300 million people in the world suffer one of the ∼7000 diseases considered as rare. Over 1200 of these disorders are known to affect the brain or other parts of our nervous system, and their symptoms can affect cognition, motor function and/or social interaction of the patients; we refer collectively to them as rare neurological disorders or RNDs. We have focused this review on RNDs known to have compromised protein homeostasis pathways. Proteostasis can be regulated and/or altered by a chain of cellular mechanisms, from protein synthesis and folding, to aggregation and degradation. Overall, we provide a list comprised of above 215 genes responsible for causing more than 170 distinct RNDs, deepening on some representative diseases, including as well a clinical view of how those diseases are diagnosed and dealt with. Additionally, we review existing methodologies for diagnosis and treatment, discussing the potential of specific deubiquitinating enzyme inhibition as a future therapeutic avenue for RNDs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.semcdb.2018.10.007 | DOI Listing |
BMC Pediatr
January 2025
Department of Pediatrics II (Neonatology), Medical University of Innsbruck, Innsbruck, Austria.
Preterm infants are at high risk of developing respiratory distress syndrome (RDS). Mutations in the genes encoding for surfactant proteins B and C or the ATP-binding cassette transporter A3 (ABCA3) are rare but known to be associated with severe RDS and interstitial lung diseases. The exact prevalence of these mutations in the general population is difficult to determine, as they are usually studied in connection with clinical symptoms.
View Article and Find Full Text PDFMov Disord
January 2025
Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA.
Background: Perry syndrome (PS) is a rare and fatal hereditary autosomal dominant neurodegenerative disorder caused by mutations in dynactin (DCTN1). PS brains accumulate inclusions positive for ubiquitin, transactive-response DNA-binding protein of 43 kDa (TDP-43), and to a lesser extent dynactin.
Objectives: Little is known regarding the contributions of TDP-43, an RNA binding protein that represses cryptic exon inclusion, in PS.
Stem Cell Res
January 2025
Department of Biophysics, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, India. Electronic address:
PGK1 (phosphoglycerate kinase-1) is required for ATP production in the body. Mutation in the PGK1 gene causes a rare, inherited metabolic disorder causing deficiency of enzyme PGK1, leading to hemolytic anemia, neurological symptoms, and muscle weakness. We generated induced pluripotent stem cells (iPSCs) from a patient carrying a PGK1 variant by isolating fibroblasts from skin punch biopsy and reprogramming using CytoTune iPS 2.
View Article and Find Full Text PDFStem Cell Res
December 2024
Murdoch Children's Research Institute, Parkville, Victoria, Australia; Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia. Electronic address:
A rare neurodevelopmental disorder has been linked to a well-conserved splice site variant in the TRAPPC4 gene (c.454 + 3A > G), which causes mis-splicing of TRAPPC4 transcripts and reduced levels of TRAPPC4 protein. Patients present with severe progressive neurological symptoms including seizures, microcephaly, intellectual disability and facial dysmorphism.
View Article and Find Full Text PDFJ Pediatr Endocrinol Metab
January 2025
Department of Rare Diseases, Institute of Graduate Studies in Health Sciences, Istanbul University, Istanbul, Türkiye.
Objectives: Phenylketonuria (PKU) and tyrosinemia type 3 (HT3) are both rare autosomal recessive disorders of phenylalanine-tyrosine metabolism. PKU is caused by a deficiency in phenylalanine hydroxylase (PAH), leading to elevated phenylalanine (Phe) and reduced tyrosine (Tyr) levels. HT3, the rarest form of tyrosinemia, is due to a deficiency in 4-hydroxyphenylpyruvate dioxygenase (HPD).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!