The use of nanotechnology for nanobacteria (or calcifying nanoparticles) treatment is a new creative approach. Use of selenium nanoparticles (SeNPs) as anti-nanobacterial agents might be considered as a bright promising approach due to their critical role in the inhibition of crystal growth and aggregation of calcium oxalate. Hence, in this study, we investigated the probable outcome of SeNPs inhibitory effects on growth of nanobacteria. Fragments of thirty urinary tract stones were chemically analyzed by X-ray diffraction (XRD) and urinary stones Kits for calcifying nanoparticles presence. Then powder of stone fragments were resuspended in Dulbecco's modified Eagle's medium (DMEM), sterilized by filtration and cultured in presence of 1, 5, 30, 60, and 90 μmol/L SeNPs concentrations. Besides, calcifying nanoparticles growth in the culture without SeNPs was measured spectrophotometrically. Also, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analyses were used, where calcifying nanoparticles formation occurred. Results showed that in the culture without SeNPs, the positive calcifying nanoparticles detection was 60% while after adding SeNPs at 90 μmol/L, not any calcifying nanoparticles were observed. Further confirmation came out when Energy-dispersive X-ray (EDX) analysis showed calcium and phosphate peaks in the culture medium without any SeNPs while in the culture containing 90 μm/L SeNPs a decrease in calcium and other minerals was obvious. Therefore, SeNPs clearly restricted the growth of nanobacteria due to their inhibitory effects on calcium oxalate deposition.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.micpath.2018.10.026 | DOI Listing |
Cardiovasc Res
December 2024
Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands.
Aims: Calciprotein particles (CPPs) are circulating calcium and phosphate nanoparticles associated with the development of vascular calcification (VC) in chronic kidney disease (CKD). Although recent studies have been focusing on associations of CPPs with the presence of VC in CKD, insights in the underlying processes and mechanisms by which CPPs might aggravate VC and vascular dysfunction in vivo are currently lacking. Here, we assessed the overall burden of abdominal VC in healthy kidney donors and CKD patients and subsequently performed transcriptome profiling in the vascular tissue obtained from these subjects, linking outcome to CPP counts and calcification propensity.
View Article and Find Full Text PDFClin Exp Dent Res
June 2024
Key Laboratory of Oral Disease of Higher Schools in Guizhou Province, Zunyi Medical University, Zunyi, China.
Objectives: Calcifying nanoparticles (CNPs), referred to as nanobacteria (NB), are recognized to be associated with ectopic calcification. This study aims to isolate and culture CNPs from the dental plaque of patients with periodontal disease and investigate their possible role in unravelling the aetiology of periodontal disease.
Material And Methods: Supragingival and subgingival plaques were sampled from 30 periodontitis patients for CNPs isolation and culture.
Cell Biochem Funct
December 2023
Department of Drug Radiation Research, Atomic Energy Authority, National Center for Radiation Research and Technology (NCRRT), Cairo, Egypt.
Kidney stones have been associated with an increased risk of chronic kidney diseases, end-stage renal failure. This study is devoted to isolate nanobacteria from patients with active urolithiasis and investigate the in vitro and in vivo antinanobacterial activity of some antibiotics alone or in combination with extracts of irradiated herbs from certain medicinal plants. Nanobacteria were detected using scanning (SEM) and transmission (TEM) electron microscopy, protein electrophoresis (SDS-PAGE) and DNA profile.
View Article and Find Full Text PDFInt J Mol Sci
September 2023
Department of Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany.
Uremic toxins exert pathophysiological effects on cells and tissues, such as the generation of a pro-calcifying subtype of exosome-like extracellular vesicles (EVs) in vascular cells. Little is known about the effects of the toxins on the surface structure of EVs. Thus, we studied the effects of uremic toxins on the abundance of sulfated glycosaminoglycans (GAGs) in EVs, and the implications for binding of ligands such as very small superparamagnetic iron oxide particles (VSOPs) which could be of relevance for radiological EV-imaging.
View Article and Find Full Text PDFNat Microbiol
April 2023
School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!