Jumonji Inhibitors Overcome Radioresistance in Cancer through Changes in H3K4 Methylation at Double-Strand Breaks.

Cell Rep

Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, USA; Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX, USA. Electronic address:

Published: October 2018

We have uncovered a role for Jumonji inhibitors in overcoming radioresistance through KDM5B inhibition. Pharmacological blockade of Jumonji demethylases with JIB-04 leads to specific accumulation of H3K4me3 at sites marked by γH2AX and impaired recruitment of DNA repair factors, preventing resolution of damage and resulting in robust sensitization to radiation therapy. In DNA-repair-proficient cancer cells, knockdown of the H3K4me3 demethylase KDM5B, but not other Jumonji enzymes, mimics pharmacological inhibition, and KDM5B overexpression rescues this phenotype and increases radioresistance. The H3K4me3 demethylase inhibitor PBIT also sensitizes cancer cells to radiation, while an H3K27me3 demethylase inhibitor does not. In vivo co-administration of radiation with JIB-04 significantly prolongs the survival of mice with tumors even long after cessation of treatment. In human patients, lung squamous cell carcinomas highly expressing KDM5B respond poorly to radiation. Thus, we propose the use of Jumonji KDM inhibitors as potent radiosensitizers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6245670PMC
http://dx.doi.org/10.1016/j.celrep.2018.09.081DOI Listing

Publication Analysis

Top Keywords

jumonji inhibitors
8
cancer cells
8
h3k4me3 demethylase
8
demethylase inhibitor
8
jumonji
5
inhibitors overcome
4
overcome radioresistance
4
radioresistance cancer
4
cancer changes
4
changes h3k4
4

Similar Publications

Background: Detecting and treating stomach cancer requires a comprehensive understanding of how gastric cancer develops and progresses. In this context, efforts have been made to elucidate the regulation of glutamine-fructose-6-phosphate transaminase 1 () and Lysine demethylase 4C () in gastric cancer.

Methods: Bioinformatics was utilized to predict the levels and correlation of and in gastric cancer, followed by determining their expressions via quantitative real-time polymerase chain reaction (qRT-PCR).

View Article and Find Full Text PDF

Enforced activation of the CREB/KDM2B axis prevents alcohol-induced embryonic developmental delay.

Cell Rep

December 2024

State Key Laboratory of Experimental Hematology, the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Cell Biology, Tianjin Medical University, Qixiangtai Road 22, Tianjin 300070, China; Tianjin Key Laboratory of Epigenetics for Organ Development of Premature Infants, Tianjin 300450, China. Electronic address:

Unintentional, early pregnancy alcohol consumption affects embryonic development. During the peri-implantation stage, coinciding with the transition from naive to primed pluripotency, the long isoform of KDM2B (KDM2BLF) underlies the de novo establishment of polycomb repressive complex (PRC) functions at promoters after fertilization. However, it remains unclear whether and how ethanol exposure affects this spatiotemporal chromatin setting.

View Article and Find Full Text PDF

JIB-04, an inhibitor of Jumonji histone demethylase as a potent antitubercular agent against Mycobacterium tuberculosis.

Arch Microbiol

November 2024

National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, No. 29, Bulan Road, Longgang District, Shenzhen, 518112, China.

The increasing drug resistance of Mycobacterium tuberculosis (Mtb), coupled with the limited availability of effective anti-tuberculosis medications, poses significant challenges for the management and treatment of tuberculosis (TB). Globally, non-tuberculous mycobacteria (NTM) infections are increasing, with Mycobacterium avium complex and Mycobacterium abscessus (Mab) being the most common in labs and having few treatment options. There's an urgent need for innovative therapies against Mtb and NTM that are effective and have minimal side effects.

View Article and Find Full Text PDF

AGEs impair osteogenesis in orthodontic force-induced periodontal ligament stem cells through the KDM6B/Wnt self-reinforcing loop.

Stem Cell Res Ther

November 2024

Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Shandong University, No.44-1 Wenhua Road West, Jinan, Shandong, 250012, China.

Background: Diabetes, occasionally diagnosed in orthodontic patients, can impede orthodontic tooth movement (OTM) by accumulating advanced glycation end products (AGEs) in the periodontium. This accumulation impairs the osteogenic differentiation of periodontal ligament stem cells (PDLSCs) due to alterations in the force-loaded microenvironment, yet the underlying mechanisms remain elusive.

Methods: Bioinformatics analysis of GSE112122 identified alterations in the mechanical regulation of histone methylation enzyme Lysine Demethylase 6B (KDM6B).

View Article and Find Full Text PDF

Discovery of new fungal jumonji H3K27 demethylase inhibitors for the treatment of Cryptococcus neoformans and Candida auris infections.

Eur J Med Chem

January 2025

The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), 325 Guohe Road, Shanghai, 200433, China. Electronic address:

Invasive fungal infections have become a serious public health problem. To tackle the challenges of limited efficacy in antifungal therapy and severe drug resistance, antifungal drugs with new mechanisms of action are urgently needed. Our previous study identified JIB-04 to be an inhibitor of fungal histone demethylase (HDM).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!