A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

New Insight into Gap Electrospinning: Toward Meter-long Aligned Nanofibers. | LitMetric

New Insight into Gap Electrospinning: Toward Meter-long Aligned Nanofibers.

Langmuir

Department of Mechanical and Electrical Engineering , Xiamen University, Xiamen 361005 , China.

Published: November 2018

Gap electrospinning is a facile technique to produce aligned nanofibers useful for many applications, but its potential has not yet been fully exploited in nature, leading to the fiber length still limited to several tens of centimeters at present. In this work, we report a breakthrough in the production of well-aligned nanofibers with record length and efficiency. Using a suitable poly(vinylidene fluoride) solution and a pair of parallel plates that are substrate-free and negatively connected, we demonstrate the ease of this technique to prepare length-controllable aligned fibers in a wide range (≤125 cm). Because of the crucial roles of both the jet whipping instability that continuously drives the jet to span across the static plates and the negative voltage on the plates that effectively attracts the positively charged jet, the jet can be made to move back and forth over the superlarge gap to form ultralong aligned nanofibers. By introducing a projection method, we also redefine fiber alignment in a broader sense. This work is believed to provide a new insight into the nature of gap electrospinning, which will greatly expand the versatility of this technique to create devices for a myriad of applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.8b03114DOI Listing

Publication Analysis

Top Keywords

gap electrospinning
12
aligned nanofibers
12
insight gap
4
electrospinning meter-long
4
aligned
4
meter-long aligned
4
nanofibers
4
nanofibers gap
4
electrospinning facile
4
facile technique
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!