Synthesis of Glycomimetics by Diastereoselective Passerini Reaction.

J Org Chem

Ruđer Bošković Institute, Division of Organic Chemistry and Biochemistry , Bijenička cesta 54 , 10000 Zagreb , Croatia.

Published: November 2018

We describe the utilization of bis-isopropylidene-protected d-fructose-derived aldehyde in the Passerini reaction with various acids and isocyanides. A library of densely functionalized glycomimetics bearing up to 3 carbohydrate units was obtained in high yields and diastereoselectivities. The configuration of the newly formed stereocenter was determined and the diastereoselectivity was rationalized by DFT calculations.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.joc.8b01874DOI Listing

Publication Analysis

Top Keywords

passerini reaction
8
synthesis glycomimetics
4
glycomimetics diastereoselective
4
diastereoselective passerini
4
reaction describe
4
describe utilization
4
utilization bis-isopropylidene-protected
4
bis-isopropylidene-protected d-fructose-derived
4
d-fructose-derived aldehyde
4
aldehyde passerini
4

Similar Publications

The cell death receptor FAS and its ligand (FASLG) play crucial roles in the selection of B cells during the germinal center (GC) reaction. Failure to eliminate potentially harmful B cells via FAS can lead to lymphoproliferation and the development of B cell malignancies. The classic form of follicular lymphoma (FL) is a prototypic GC-derived B cell malignancy, characterized by the t(14;18)(q32;q21)IGH::BCL2 translocation and overexpression of antiapoptotic BCL2.

View Article and Find Full Text PDF

Multicomponent reactions have long been recognized as some of the most versatile tools in organic chemistry, with extensive applications in biomedical science and the pharmaceutical industry. In this study, we explored the potential of the Passerini reaction by designing and synthesizing new low molecular mass gelators that can serve as novel formulations for prolonged anesthesia. These gelators address critical issues like poor solubility, low bioavailability, and short plasma half-life, all of which hinder therapeutic efficacy.

View Article and Find Full Text PDF

Dual functionalization of carboxymethyl cellulose and alginate via Passerini three-component reaction to graft two hydrophobic moieties: Toward modular thin films.

Carbohydr Polym

March 2025

Université Claude Bernard Lyon 1, INSA Lyon, Université Jean Monnet, CNRS UMR 5223, Ingénierie des Matériaux Polymères, F-69621 Cédex, France. Electronic address:

Passerini reaction was advantageously exploited to hydrophobize carboxymethyl cellulose (CMC) and alginates (ALG) by employing various hydrophobic aldehydes and isocyanides. The Passerini reaction, carried out in ecofriendly conditions, allowed to design never described twofold hydrophobized polysaccharide derivatives via the covalent grafting of two hydrophobic moieties. The modified CMC and ALG products were in-depth characterized to guaranty the success of the modification and to calculate the degrees of substitution (DS).

View Article and Find Full Text PDF

Sequence-defined polymers composed of a large pool of chemically distinct monomers (SDPs) have been pursued to achieve the structural and functional precisions exhibited by biopolymers in nonbiological environments. In contrast to the incremental growth of SDPs by sequential addition of individual monomers, the iterative exponential growth (IEG) method allows the synthesis of high molecular-weight SDPs, but their sequences have been composed mostly of binary monomers. Consequently, achieving high molecular-weight SDPs built with a large pool of monomers remains a challenge.

View Article and Find Full Text PDF

Accessing Promising Passerini Adducts in Anticancer Drug Design.

Molecules

November 2024

LAQV-REQUIMTE, Institute for Research and Advanced Studies, University of Évora, Rua Romão Ramalho, 59, 7000-641 Évora, Portugal.

The 3-component Passerini reaction (3CPR), discovered little more than 100 years ago, has been demonstrated in the last few decades to be a valuable tool for accessing structural diversity and complexity, essential topics to consider in drug discovery programs. Focusing on accessing a fine-tuned family of α-acyloxyamide-oxindole hybrids, we underline herein our latest insights regarding the use of this mild reaction approach to obtain promising anticancer agents. Cheap and commercially available isatin was used as starting material.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!