The versatile technique of reversed-flow gas chromatography was introduced to calculate physicochemical quantities for the interaction between aroma compounds and starch. Adsorption, adsorption/desorption, and surface reaction rate constants as well as surface diffusion coefficients for the vapors of aroma compounds over the different starch surfaces were calculated in the temperature range of 303.15-333.15 K. Enthalpies of adsorption between -45.5 and -109.0 kJ mol and enthalpies of physicochemical interaction between 6.8 and 47.4 kJ mol were also calculated for all the systems studied. From the obtained results, it is concluded that the interaction forces between aroma compounds and starch correspond to weak energy bonds such as hydrogen bonds and dipole-dipole interactions. For all the systems studied, except for the system heptanal/potato, physical sorption of aroma compounds on starch granules was indicated according to the calculated activation energies.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jafc.8b04360DOI Listing

Publication Analysis

Top Keywords

aroma compounds
20
compounds starch
20
reversed-flow gas
8
gas chromatography
8
interaction aroma
8
systems studied
8
aroma
5
compounds
5
starch
5
chromatography tool
4

Similar Publications

The occurrence of off-flavor in osmanthus absolutes has emerged as a significant concern that could hinder its broad market acceptance and associated economic development. In this study, key off-flavor molecules in industrial osmanthus absolute were identified through sensomics and chemometric approaches. A group of 10 off-flavor (OF) samples, eliciting smoky/phenolic, sweaty/sour, and spicy odors, were compared with 10 pleasant aroma (PA) samples through various analyses, including overall aroma assessment, comprehensive chemical profiling, aroma extract dilution analysis (AEDA), and orthogonal partial least-squares-discriminant analysis (OPLS-DA).

View Article and Find Full Text PDF

Characterization and comparative analysis of volatile organic compounds in four aromatic wild strawberry species using HS-SPME-GC-MS.

Food Chem X

January 2025

Institute of Pomology, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China.

Strawberries are valued for their aroma, which is mainly determined by volatile organic compounds (VOCs). Wild strawberries, with broader and more intense VOC profiles, are especially important in breeding programs. Using HS-SPME-GC-MS, 126 VOCs were identified in the ripe fruit of 22 cultivars from four wild strawberry species.

View Article and Find Full Text PDF

Fermentation is crucial for inducing desirable flavor and aroma profiles in cocoa products. This research focused on identifying microbial strains isolated from spontaneous cocoa fermentation in Hainan through 16S and Internal Transcribed Spacer (ITS) sequencing. Pectinase activity was screened, and metabolic dynamics of sugars and organic acids were analyzed using high-performance liquid chromatography.

View Article and Find Full Text PDF

We here analyzed changes in the proportion and content of chiral isomers of linalool and its derivatives in "Hainan dayezhong" throughout its life cycle from tea tree growth and tea manufacturing to brewing. The chiral isomers of aromatic compounds present in fresh tea leaves were found to undergo substantial diurnal and seasonal changes during tea tree growth, and their proportions varied slightly across different leaf positions. The chiral isomer content of linalool and its derivatives was consistently higher in stems than in leaves.

View Article and Find Full Text PDF

Cassava is a starchy staple typically consumed in tropical countries; however, its high moisture content renders it susceptible to post-harvest deterioration. Fermentation has been used to improve shelf-life, functional properties, nutrient bioavailability, minimize toxic compounds, and alter aroma. In this study, the effect of added salt (5-25 %) on the pH, titratable acidity (TTA), and volatile compounds (VOCs) in cassava fermented was investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!