Despite the well-reported MLCT [dπ(M) → π*(CNR)] transitions in the isocyano transition metal complexes, emissive complexes with phosphorescence derived from MLCT [dπ(M) → π*(CNR)] were not extensively studied. To provide insights into the design strategy of phosphorescent rhenium(I) complexes with an emissive MLCT [dπ(Re) → π*(CNR)] excited state, a series of pentaisocyano rhenium(I) complexes have been synthesized. In contrast to most of the reported penta- or hexaisocyano rhenium(I) complexes with unsubstituted or alkyl- or monohalo-substituted phenylisocyanide ligands, which only exhibit photoluminescence in 77 K glassy medium, the solutions of all of these complexes were found to show phosphorescence at room temperature. Detailed study on their emission properties revealed that they are derived from the MLCT [dπ(Re) → π*(CNR)] excited state mixed with LL'CT character. It has been shown that the strong electron-withdrawing substituents on the isocyanide ligands can lower the energy of the MLCT [dπ(Re) → π*(CNR)] state and raise the deactivating ligand-field state. These effects are the crucial criteria to render the pentaisocyano rhenium(I) complexes emissive. Moreover, the emission properties in terms of energy, lifetime, and quantum yields can also be enhanced by the ancillary ligand.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.8b02536DOI Listing

Publication Analysis

Top Keywords

rheniumi complexes
20
→ π*cnr]
20
complexes emissive
12
mlct [dπre
12
[dπre →
12
complexes
8
mlct [dπm
8
[dπm →
8
complexes phosphorescence
8
derived mlct
8

Similar Publications

A series of substituted 2-(2-benzylidenehydrazinyl)benzothiazole Schiff-base derivatives and complexes containing Re(I) were synthesized and analyzed using various characterization techniques, including elemental analysis, conductance measurement, H-NMR, FT-IR, and LC-MS. The biological activities of the compounds were evaluated. Binding affinity between the complexes and calf thymus DNA (CT-DNA) was conducted using UV-visible spectroscopy, viscosity measurement, fluorescence spectroscopy, and molecular docking studies, indicating intercalation binding mode.

View Article and Find Full Text PDF

Improvements to the understanding of how reaction conditions influence the performance of molecular electrocatalysts are important. There exists a wide range of solution conditions that are used in the investigation of the properties and performance of electrocatalysts, from the choice of solvent or electrolyte to the identity and nature of other additives, like Brønsted acids. Herein, we demonstrate how the choice of solvent can have a significant impact on the observed rate constants for CO-to-CO conversion by a series of rhenium(I) diimine complexes.

View Article and Find Full Text PDF

Chiral rhenium(I) emitters exhibiting circularly polarized phosphorescence (CPP) are an attractive mainstay for CP organic light-emitting diodes (CP-OLEDs). However, the efficiency of such emitters is not ideal, and they have never been explored for circularly polarized electroluminescence (CPEL) applications. Here, we have tailored robust chiral Re(I) complexes with improved CPP properties, and demonstrated CPEL from rhenium emitters for the first time.

View Article and Find Full Text PDF

Transition metal complex-loaded nanosystems (TMCNs) represent a cutting-edge platform for stimuli (light, ultrasound)-responsive cancer therapies. These nanosystems, incorporating metals such as manganese(II), zinc(II), ruthenium(II), rhenium(I), iridium(III), and platinum(IV), significantly enhance the efficacy of light-activated therapies, including photodynamic therapy (PDT) and photothermal therapy (PTT), as well as ultrasound-activated treatments like sonodynamic therapy (SDT). TMCNs based on ruthenium(II), rhenium(I), and iridium(III) improve PDT, while manganese(II) and iridium(III) demonstrate exceptional sonosensitizing properties.

View Article and Find Full Text PDF

Novel 6-substituted 2-(trifluoromethyl)quinoline 5a-5e and coumarin 6a-6d ligands with aldoxime ether linked pyridine moiety were synthesized by O-alkylation of quinoline and coumarin with (E)-picolinaldehyde oxime and subsequently with [Re(CO)Cl] gave rhenium(I) tricarbonyl complexes 5a-5e and 6a-6d that were fully characterized by NMR, single-crystal X-ray diffraction, IR and UV-Vis spectroscopy. The results of antiproliferative evaluation of quinoline and coumarin ligands and their rhenium(I) tricarbonyl complexes on various human tumor cell lines, including acute lymphoblastic leukemia (CCRF-CEM), acute monocytic leukemia (THP1), cervical adenocarcinoma (HeLa), colon adenocarcinoma (CaCo-2), T-cell lymphoma (HuT78), and non-tumor human fibroblasts (BJ) showed that the quinoline complexes 5a-5e had higher inhibitory activity than coumarin complexes 6a-6d, particularly against T-cell lymphoma (HuT78) cells. 6-Methoxy-2-(trifluoromethyl)quinoline 5e and 6-methylcoumarin 6d, and their rhenium(I) tricarbonyl complexes 5e and 6d were found to arrest the cell cycle of HuT78 cells by causing a significant accumulation of cells in the G0/G1 phase and a marked decrease in the number of cells in the G2/M phase.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!