Background: Biological and technical variability has been increasingly appreciated as a key factor impacting red blood cell (RBC) storability and, potentially, transfusion outcomes. Here, we performed metabolomics analyses to investigate the impact of factors other than storage duration on the metabolic phenotypes of stored RBC in a multicenter study.
Study Design And Methods: Within the framework of the REDS-III (Recipient Epidemiology and Donor Evaluation Study-III) RBC-Omics study, 13,403 donors were enrolled from four blood centers across the United States and tested for the propensity of their RBCs to hemolyze after 42 days of storage. Extreme hemolyzers were recalled and donated a second unit of blood. Units were stored for 10, 23, and 42 days prior to sample acquisition for metabolomics analyses.
Results: Unsupervised analyses of metabolomics data from 599 selected samples revealed a strong impact (14.2% of variance) of storage duration on metabolic phenotypes of RBCs. The blood center collecting and processing the units explained an additional 12.2% of the total variance, a difference primarily attributable to the storage additive (additive solution 1 vs. additive solution 3) used in the different hubs. Samples stored in mannitol-free/citrate-loaded AS-3 were characterized by elevated levels of high-energy compounds, improved glycolysis, and glutathione homeostasis. Increased methionine metabolism and activation of the transsulfuration pathway was noted in samples processed in the center using additive solution 1.
Conclusion: Blood processing impacts the metabolic heterogeneity of stored RBCs from the largest multicenter metabolomics study in transfusion medicine to date. Studies are needed to understand if these metabolic differences influenced by processing/storage strategies impact the effectiveness of transfusions clinically.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6322946 | PMC |
http://dx.doi.org/10.1111/trf.14979 | DOI Listing |
J Occup Environ Hyg
January 2025
Center for Environmental Solutions and Emergency Response, United States Environmental Protection Agency, Cincinnati, Ohio.
Chemical release data are essential for performing chemical risk assessments to understand the potential exposures arising from industrial processes. Often, these data are unknown or unavailable and must be estimated. A case study of volatile organic compound releases during extrusion-based additive manufacturing is used here to explore the viability of various regression methods for predicting chemical releases to inform chemical assessments.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, P. R. China.
Chlorophyll (Chl) is the most abundant light-harvesting pigment of oxygenic photosynthetic organisms; however, the Q-band energetics and relaxation dynamics remain unclear. In this work, we have applied femtosecond time-resolved (-TA) absorption spectroscopy in 430-1,700 nm to Chls and in diluted pyridine solutions under selective optical excitation within their Q-bands. The results revealed distinct near-infrared absorption features of the B ← Q and B ← Q transitions in 930-1,700 nm, which together with the steady-state absorption in 400-700 nm unveiled the Q-state energy that lies 1,000 ± 400 and 600 ± 400 cm above the Q-state for Chls and , respectively.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, 100871, China.
The primary cilia serve as pivotal mediators of environmental signals and play crucial roles in neuronal responses. Disruption of ciliary function has been implicated in neuronal circuit disorders and aberrant neuronal excitability. However, the precise mechanisms remain elusive.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Universitat Bern, Department of Chemistry and Biochemistry, Freiestrasse 3, 3012, Bern, SWITZERLAND.
Isotope Exchange processes are becoming the preferred way to prepare isotopically labelled molecules, avoiding the redesign of multistep synthetic protocols. In the case of deuterium incorporation, the most used strategy has employed transition metals, that offer high reactivity under mild reaction conditions. Despite their success, the trade-off is that these metals are precious, and often exhibit high toxicity.
View Article and Find Full Text PDFBiomacromolecules
January 2025
Department of Material Engineering, Indian Institute of Science, Bangalore 560012, Karnataka, India.
Chitosan (CHT) is a known piezoelectric biomacromolecule; however, its usage is limited due to rapid degradation in an aqueous system. Herein, we prepared CHT film via a solvent casting method and cross-linked in an alkaline solution. Sodium hydroxide facilitated deprotonation, leading to increased intramolecular hydrogen bonding and mechanical properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!