The karyotypes of Allium, a genus that comprises many crops and ornamental plants, are relatively poorly studied. To extend our knowledge on karyotype structure of the genus, the chromosomal organization of rRNA genes and CMA/DAPI bands was studied. Fluorescence in situ hybridization using 5S and 35S rDNA probes and banding methods (silver staining and CMA/DAPI staining) were used to analyze the karyotypes of eight cultivated Allium L. species. Analyzed Allium taxa revealed three different basic chromosome numbers (x = 7, 8, 9) and three different ploidy levels (diploid, triploid, and tetraploid). The rDNA sites chromosomal organization is reported the first time for the six species (A. moly, A. oreophilum, A. karataviense, A. nigrum, A. sphaerocephalon, A. porrum). The Allium species that were analyzed showed a high level of interspecies polymorphism in the number and localization of the rDNA sites. The fluorescence in situ hybridization patterns of 35S rDNA sites were more polymorphic than those of the 5S rDNA in the diploid species. Several groups of similar chromosomes could be distinguished among the chromosomes that had rDNA sites in the polyploid species. Each of the groups had three chromosomes (triploid A. sphaerocephalon L.) or four chromosomes (tetraploid A. porrum L.) suggesting their autopolyploid origin. In the genomes of four of the analyzed species, only some of the 35S rDNA sites were transcriptionally active. Fluorochrome banding revealed that the CMA bands were associated with the 35S rDNA sites in all of the species that were analyzed, except A. fistulosum L. in which positive CMA bands were detected in the terminal position of all of the chromosome arms. The rDNA sequences, nucleolar organizer regions (NORs), and CMA/DAPI bands are very good chromosome markers that allowed to distinguished from two to five pairs of homologous chromosomes in analyzed Allium species. The karyotypes of the studied species could be clearly distinguished by the number and position of the rDNA sites, NORs, and CMA/DAPI bands, which revealed high interspecific differentiation among the taxa.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6373409 | PMC |
http://dx.doi.org/10.1007/s13353-018-0474-1 | DOI Listing |
Arbuscular mycorrhizal fungi (AMF, phylum Glomeromycota) are essential to plant community diversity and ecosystem functioning. However, increasing human land use represents a major threat to native AMF globally. Characterizing the loss of AMF diversity remains challenging because many taxa are undescribed, resulting in poor documentation of their biogeography and family-level disturbance sensitivity.
View Article and Find Full Text PDFInt J Syst Evol Microbiol
January 2025
Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China.
Three aerobic, pink-pigmented, Gram-negative, motile and rod-shaped bacterial strains, designated SD21, SI9 and SB2, were isolated from the phyllosphere of healthy litchis collected from three main producing sites of Guangdong Province, PR China. The 16S rRNA gene analysis showed that strains SD21 and SI9 belonged to the genus (.) with the highest similarity to DSM 19563 (98.
View Article and Find Full Text PDFSci Data
January 2025
Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France.
Microbiological datasets and associated environmental parameters from the French soil quality monitoring network (RMQS) offer an opportunity for long-term and large-scale soil quality monitoring. Soils supply important ecosystem services e.g.
View Article and Find Full Text PDFGenetica
January 2025
Environmental Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab, Alexandria, Egypt.
The presence of Azotobacter bacteria in the soil plays an important role in increasing its fertility and enhancing plant health. Azotobacter diversity depends on several environmental factors, particularly soil texture, pH, and nutrient content. The current study investigated the diversity of Azotobacter in various soil samples collected from 10 different governorates along the river Nile valley and its delta, Northern Mediterranean shore, Sinai, and Upper Egypt regions.
View Article and Find Full Text PDFInt J Syst Evol Microbiol
January 2025
Infectious Bacterial Diseases Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Ames, IA, USA.
Isolates of spp. were cultured from water sources at five different sites in central Iowa in the Midwestern United States and characterized by whole-genome sequencing. Isolates were helix-shaped and motile.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!