Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In situ degradation of organic contaminants by Pd and electro-generated H and O overcomes the drawbacks to traditional Fenton process, and conducting heterogeneous catalyst of FeMgAl layered double hydrotalcite (LDH) further improved the efficiency and stability. Using bisphenol A (BPA) as the model contaminants, 90% removal can be achieved with 1200 mg/L Pd/AlO and FeMgAl-2. The reusability was satisfying due to the very limited leaching of Fe ions at 0.1 ppm level. FeMgAl also amplified the window of pH for Pd-catalyzed in situ advanced oxidation processes (AOPs) from 3 by homogenous Fe(II) to 3-7 by FeMgAl LDH. The COD of landfill leachate effluent of the MBR system removed by about 52.3% by this system by the initial pH was 5. Characterizations revealed the distinguishing features associated with LDH structure such as large surface area, good stability, basic character, and strong linage among active sites were accounted for the remarkable performances over a wide pH window. Five reactive intermediates were observed and multiple degradation pathways were proposed in Pd-catalyzed in situ AOP for the first time. Interestingly, because of the unique role of Pd catalyst, these degradation pathways were clearly distinguished from traditional Fenton or Fenton-like AOPs and may provide a new approach of in situ heterogeneous AOPs for refractory contaminants in future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-018-3454-4 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!