AI Article Synopsis

  • The study focused on spinal ganglion neurons during skin wound regeneration complicated by S. aureus infection, observing different types of neuron reactions, including reversible and irreversible changes.
  • It was found that small B neurons were more prevalent than large type A neurons throughout the experiment.
  • Using platelet-rich plasma after hydroimpulsive treatment significantly aided neuron regeneration and reduced cell damage, while using it alone slowed healing and increased neuron damage compared to natural healing.

Article Abstract

We studied the reactions of spinal ganglion neurons accompanying regeneration of the skin wound complicated by S. aureus sp. infection. The appearance of neuron groups with different morphofunctional changes was noted: reversible dystrophic and compensatory reactions and irreversible degenerative changes. The proportion of small B neurons was higher than the proportion of large type A neurons at all terms of the experiment. Application of plateletrich plasma to the wound after preliminary hydroimpulsive treatment considerably reduced cell destruction and stimulated regenerative effects in neurons starting from day 7 of the experiment. Application of platelet-rich plasma without hydroimpulsive treatment decelerated wound regeneration and increased the number of destructively changed neurons even in comparison with spontaneous wound healing. Close correlations between protein synthesis markers and stages of the wound process and its characteristics were revealed.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10517-018-4270-zDOI Listing

Publication Analysis

Top Keywords

spinal ganglion
8
ganglion neurons
8
skin wound
8
experiment application
8
hydroimpulsive treatment
8
neurons
6
wound
6
regenerative potential
4
potential spinal
4
neurons topical
4

Similar Publications

Lower urinary tract symptoms (LUTS) significantly affect patient quality of life. Treatment options for bladder outlet obstruction (BOO) due to benign prostatic hyperplasia (BPH) (a common cause of LUTS) are insufficient to relieve discomfort. As the incidence of BPH is increasing, new pharmacological targets for LUTS treatment are required.

View Article and Find Full Text PDF

GABA receptor (GABAR) activation is known to alleviate pain by reducing neuronal excitability, primarily through inhibition of high voltage-activated (HVA) calcium (Ca2.2) channels and potentiating G protein-coupled inwardly rectifying potassium (GIRK) channels. Although the analgesic properties of small molecules and peptides have been primarily tested on isolated murine dorsal root ganglion (DRG) neurons, emerging strategies to develop, study, and characterise human pluripotent stem cell (hPSC)-derived sensory neurons present a promising alternative.

View Article and Find Full Text PDF

Preclinical and clinical studies have established that autoreactive immunoglobulin G (IgG) can drive neuropathic pain. We recently demonstrated that sciatic nerve chronic constriction injury (CCI) in male and female mice results in the production of pronociceptive IgG, which accumulates around the lumbar region, including within the dorsal root ganglia (DRG) and spinal cord, facilitating the development of neuropathic pain. These data raise the intriguing possibility that neuropathic pain may be alleviated by reducing the accumulation of IgG.

View Article and Find Full Text PDF

NLRP3 deficiency aggravated DNFB-induced chronic itch by enhancing type 2 immunity IL-4/TSLP-TRPA1 axis in mice.

Front Immunol

January 2025

Department of Pain Management, The State Key Specialty in Pain Medicine, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.

Background: The nod-like receptor family pyrin domain-containing 3 (NLRP3) has been implicated in various skin diseases. However, its role in mediating 2, 4-dinitrofluorobenzene (DNFB)-induced chronic itch remains unclear.

Methods: Widetype () and deletion ( )mice, the expression of transient receptor potential (TRP) ankyrin 1 (TRPA1) inhibitor or recombinant mice interleukin-18 (IL-18) were used to establish and evaluate the severity of DNFB-mediated chronic itch.

View Article and Find Full Text PDF

Mechanisms of Cancer-Induced Bone Pain.

J Pain Res

January 2025

Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China.

Bone is a common site of advanced cancer metastasis, second only to the lungs and liver. Cancer-induced bone pain (CIBP) is a persistent and intense pain that is caused by a combination of inflammatory and neuropathic factors. As CIBP progresses, the degree of pain intensifies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!