Meeting the ever-growing demand for electrical storage devices requires both superior and "greener" battery technologies. Nearly 40 years after the discovery of conductive polymers, long cycling stability in lithium organic batteries has now been achieved. However, the synthesis of high-voltage lithiated organic cathode materials is rather challenging, so very few examples of all-organic lithium-ion cells currently exist. Herein, we present an inventive chemical approach leading to a significant increase of the redox potential of lithiated organic electrode materials. This is achieved by tuning the electronic effects in the redox-active organic skeleton thanks to the permanent presence of a spectator cation in the host structure exhibiting a high ionic potential (or electronegativity). Thus, substituting magnesium (2,5-dilithium-oxy)-terephthalate for lithium (2,5-dilithium-oxy)-terephthalate enables a voltage gain of nearly +800 mV. This compound being also able to act as negative electrode via the carboxylate functional groups, an all-organic symmetric lithium-ion cell exhibiting an output voltage of 2.5 V is demonstrated.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6199296 | PMC |
http://dx.doi.org/10.1038/s41467-018-06708-x | DOI Listing |
Sci Rep
December 2024
Department of Neurology, Union Hospital of Jilin University, Changchun, 130000, China.
Alzheimer's disease (AD) is a severe neurodegenerative disease, and the most common type of dementia, with symptoms of progressive cognitive dysfunction and behavioral impairment. Studying the pathogenesis of AD and exploring new targets for the prevention and treatment of AD is a very worthwhile challenge. Accumulating evidence has highlighted the effects of fatty acid metabolism on AD.
View Article and Find Full Text PDFSci Rep
December 2024
University of Health Sciences, Vietnam National University Ho Chi Minh City, YA1 Administrative Building, Hai Thuong Lan Ong Street, Dong Hoa Ward, Di An City, Binh Duong Province, 75308, Vietnam.
Oxidative stress, characterized by the damaging accumulation of free radicals, is associated with various diseases, including cardiovascular, neurodegenerative, and metabolic disorders. The transcription factor Nrf2 is pivotal in cellular defense against oxidative stress by regulating genes that detoxify free radicals, thus maintaining redox homeostasis and preventing cellular aging. Keap1 plays a regulatory role through its interaction with Nrf2, ensuring Nrf2 degradation under homeostatic conditions and facilitating its stabilization and nuclear translocation during oxidative stress.
View Article and Find Full Text PDFEcotoxicol Environ Saf
December 2024
The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330000, China. Electronic address:
Nanoplastics (NPs) are an emerging class of pollutants. They can act as a"Trojan horse" to change the bioavailability and toxicity of heavy metals in the environment. However, research on the combined toxicity of heavy metals and NPs is scarce, especially during the critical developmental period of adolescence.
View Article and Find Full Text PDFAdv Colloid Interface Sci
December 2024
Department of Chemistry and Centre for Advance Study in Chemistry, Panjab University, Chandigarh, India. Electronic address:
Meeting the contemporary demand for the development of functional, biocompatible, and environment friendly self-assembled structures using efficient, cost-effective, and energy-saving methods, the field of colloids has witnessed a surge in interest. Research into cationic and anionic (catanionic) surfactant combinations has gained momentum due to their distinct advantages and synergistic properties in this context. Catanionic self-assemblies have emerged as promising contenders for addressing these requirements.
View Article and Find Full Text PDFJ Exp Bot
December 2024
School of Biological Sciences, The University of Western Australia, Perth, WA 6009, Australia.
During their lifespan, plants are often exposed to a broad range of stresses that change their redox balance and lead to accumulation of reactive oxygen species (ROS). The traditional view is that this comes with negative consequences to cells structural integrity and metabolism and, to prevent this, plants evolved a complex and well-coordinated antioxidant defence system that relies on the operation of a range of enzymatic and non-enzymatic antioxidants (AO). Due to the simplicity of measuring their activity, and in the light of the persistent dogma that stress-induced ROS accumulation is detrimental for plants, it is not surprising that enzymatic AO have often been advocated as suitable proxies for stress tolerance, as well as potential targets for improving tolerance traits.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!