The reductions of industrial pollution and greenhouse gas emissions are important actions to create an ecologically stable civilization. However, there are few reports on the interaction and variation between them. In this study, the vertical and horizontal scatter degree method is used to calculate a comprehensive index of industrial pollution emissions. Then based on carbon density, a geographically and temporally weighted regression (GTWR) model is developed to examine the interaction between industrial pollution emissions and carbon emissions. The results specify that there exists spatial autocorrelation for carbon density in China. Overall, the average effect of industrial pollution emissions on carbon density is positive. This indicates that industrial pollution emissions play a driving role in carbon density on the whole, while there are temporal and spatial differences in the interactions at the provincial level. According to the Herfindahl index, neither time nor space can be neglected. Moreover, according to the traditional division of eastern, central and western regions in China, the situation in 30 provinces is examined. Results show that there is little difference in the parameter-estimated results between neighboring provinces. In many provinces, the pull effect of industrial pollution emissions on carbon density is widespread. Thus, carbon emissions could be reduced by controlling industrial pollution emissions in more than 60% of regions. In a few other regions, such as Shanghai and Heilongjiang, the industrial pollution emissions do not have a pull effect on carbon density. But due to spatial and temporal heterogeneity, the effects are different in different regions at different times. It is necessary to consider the reasons for the changes combined with other factors. Finally, the empirical results support pertinent suggestions for controlling future emissions, such as optimizing energy mix and reinforcing government regulation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6265980 | PMC |
http://dx.doi.org/10.3390/ijerph15112343 | DOI Listing |
Environ Sci Pollut Res Int
January 2025
Natural Resources Management and Development Team, Environment and Health Laboratory, Department of Biology, Faculty of Sciences, Moulay Ismaïl University, Zitoune, B.P.11201, Meknes, Morocco.
This study investigates the concentration of heavy metals lead (Pb), cadmium (Cd), and zinc (Zn) in the blood of house sparrows (Passer domesticus) across various urban habitats in Meknes, Morocco. Fifty adult sparrows were captured from five distinct sites, including industrial, high-traffic, and rural areas. Blood samples were specifically analyzed for Pb, Cd, and Zn using Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES).
View Article and Find Full Text PDFJ Mol Model
January 2025
Department of Mechanical Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 807, Taiwan.
Context: To address the severe fuel crisis and environmental pollution, the use of lightweight metal materials, such as AZ alloy, represents an optimal solution. This study investigates the mechanical behavior and deformation mechanism of AZ alloys under uniaxial compressive using molecular dynamics (MD) simulations. The influence of various compositions, grain sizes (GSs), and temperatures on the compressive stress, the ultimate compressive strength (UCS), compressive yield stress (CYS), Young's modulus (E), shear strain, phase transformation, dislocation distribution, and total deformation length is thoroughly examined.
View Article and Find Full Text PDFWater Sci Technol
January 2025
Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha 2713, Qatar.
This work focused on the biotreatment of wastewater and contaminated soil in a used oil recycling plant located in Bizerte. A continuous stirred tank reactor (CSTR) and a trickling filter (TF) were used to treat stripped and collected wastewater, respectively. The CSTR was started up and stabilized for 90 days.
View Article and Find Full Text PDFJ Water Health
January 2025
Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto University Katsura, Nishikyo, Kyoto 615-8540, Japan.
The discharge of sewage effluent is a major source of microbial contamination in drinking water sources, necessitating a comprehensive investigation of its impact on pathogenic bacterial communities. This study utilized full-length 16S rRNA gene amplicon sequencing to identify putative pathogenic bacteria and analyze their community structures in drinking water sources subjected to different levels of fecal pollution: urban rivers with low, moderate, and high sewage effluent mixing ratios, and mountain streams with minimal human impact. The sewage effluent itself was also analyzed.
View Article and Find Full Text PDFThe rapidly expanding industrialization and global increase in economic activities have drawn attention to the concerning accumulation of waste. The textile industry plays a significant role in environmental pollution, especially in and water pollution. Harmful dyes used during the fabrication process are mixed with water bodies through sewage or wastewater ejected from industrial factories.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!