Polyetheretherketone (PEEK) is considered to be a prime candidate with the potential to replace biomedical metallic materials as an orthopedic and dental implant on account of its elastic modulus similar to that of human cortical bone. Unfortunately, its biomedical application is impeded by the bioinert surface property and inferior osteogenic activity. In this work, phosphate groups were incorporated onto the PEEK surface through a single-step UV-initiated graft polymerization of vinylphosphonic acid. Diffuse reflectance Fourier transform infrared spectroscopy (DRFTIR), X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM) revealed that phosphate groups were successfully introduced onto the PEEK surface without apparently altering its surface topographical feature and roughness. Water contact angle measurements diclosed the increasing hydrophilia after surface phosphonation. In vitro cell adhesion, spreading, proliferation, alkaline phosphatase activity, extracellular matrix mineralization, and real-time PCR analyses showed enhanced adhesion, spreading, proliferation and osteogenic differentiation of MC3T3-E1 osteoblast on the surface-phosphorylated PEEK. An in vivo biological evaluation in the rabbit tibiae proximal defect model by means of a histological analysis confirmed that the surface-phosphorylated PEEK had improved bone-implant contact. The obtained results indicate that enhanced osteogenic activity to surface-phosphorylated PEEK, which gives positive information of its potential applications in orthopedic and dental implants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.colsurfb.2018.10.031 | DOI Listing |
Bone
December 2024
First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China. Electronic address:
Induced membrane technique (IMT) is a new method for repairing segmental bone defects. However, the mechanism of its defect repair is not clear. In recent years, several studies have gradually indicated that ferroptosis is closely related to bone remodeling.
View Article and Find Full Text PDFBiomaterials
December 2024
Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, Department of Orthopaedic Surgery, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, PR China. Electronic address:
Diabetes is associated with excessive inflammation, which negatively impacts the fracture healing process and delays bone repair. Previously, growing evidence indicated that activation of the nod-like receptor (NLR) family, such as nod-like receptor thermal protein domain-associated protein 3 (NLRP3) inflammasome induces a vicious cycle of chronic low-grade inflammatory responses in diabetic fracture. Here, we describe the synthesis of a bone adhesive hydrogel that can be locally injected into the fracture site and releases a natural inhibitor of NLRP3 (rutin) in response to pathological cue reactive oxygen species activity (ROS).
View Article and Find Full Text PDFUltrason Sonochem
December 2024
Shenzhen Key Laboratory of Food Nutrition and Health, Guangdong Engineering Technology Research Center of Aquatic Food Processing and Safety Control, School of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China. Electronic address:
In this study, the effects of ultrasound-assisted enzymatic hydrolysis on the production of antioxidant and antiosteoporotic peptides derived from oysters were investigated. Results showed that ultrasound-assisted enzymatic hydrolysis significantly enhanced the peptide content, free radical scavenging ability, and ferric reducing antioxidant power of total oyster protein hydrolysate (TOPH), with optimal results achieved at 200 W (TOPH-200). Correspondingly, ultrasound treatment at 200 W increased the exposure of hydrophobic regions, reduced α-helix content, and facilitated the generation of small molecular weight peptides in TOPH.
View Article and Find Full Text PDFJ Funct Biomater
December 2024
Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China.
: The reparative regeneration of jawbone defects poses a significant challenge within the field of dentistry. Despite being the gold standard, autogenous bone materials are not without drawbacks, including a heightened risk of postoperative infections. Consequently, the development of innovative materials that can surpass the osteogenic capabilities of autologous bone has emerged as a pivotal area of research.
View Article and Find Full Text PDFAdv Mater
December 2024
Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
The precise manipulation of PANoptosis, a newly defined cell death pathway encompassing pyroptosis, apoptosis, and necroptosis, is highly desired to achieve safer cancer immunotherapy with tumor-specific inflammatory responses and minimal side effects. Nonetheless, this objective remains a formidable challenge. Herein, an "AND" logic-gated strategy for accurately localized PANoptosis activation, utilizing composite 3D-printed bioactive glasses scaffolds integrated with epigenetic regulator-loaded porous piezoelectric SrTiO nanoparticles is proposed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!