Enhanced real-time cyanobacterial fluorescence monitoring through chlorophyll-a interference compensation corrections.

Water Res

BioMASS Lab, School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia. Electronic address:

Published: January 2019

In situ fluorometers can be used as a real-time cyanobacteria detection tool to maintain safe drinking and recreational water standards. However, previous studies into fluorometers have established issues arising mainly from measurement inaccuracies due to green algae interference. Therefore, this study focusses on developing correction factors from a systematic study on the impact of green algae as an interference source. This study brings a novel technique where the chlorophyll-a (Chl-a) and phycocyanin measurements are used to correct the fluorometer output for interference bias; four fluorometers were tested against three key cyanobacterial species and the relationship between phycocyanin output, green algae and cyanobacteria concentrations were investigated. Good correlation (R > 0.9, p-value < 0.05) was found between the fluorometer phycocyanin output and increasing green algae concentration. The optimal correction method was selected for each of the fluorometer and cyanobacteria species pairs by validating against data from the investigation of green algae as an interference source. The correction factors determined in this study reduced the measurement error for almost all the fluorometers and species tested by 21%-99% depending on the species and fluorometer, compared to previous published correction factors in which the measurement error was reduced by approximately 11%-81%. Field validation of the correction factors showed reduction in fluorometer measurement error at sites in which cyanobacterial blooms were dominated by a single species.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2018.10.034DOI Listing

Publication Analysis

Top Keywords

green algae
12
algae interference
8
enhanced real-time
4
real-time cyanobacterial
4
cyanobacterial fluorescence
4
fluorescence monitoring
4
monitoring chlorophyll-a
4
interference
4
chlorophyll-a interference
4
interference compensation
4

Similar Publications

Article Synopsis
  • Primary ciliary dyskinesia (PCD) is a rare genetic disorder linked to chronic respiratory issues, infertility, and problems with body asymmetry, primarily caused by mutations in the CCDC39 and CCDC40 genes.
  • Researchers used advanced techniques to investigate how these genetic variants impact cellular functions beyond just causing cilia to stop moving.
  • They discovered that the absence of CCDC39/CCDC40 creates a significant loss of over 90 ciliary structural proteins, leading to cilia dysfunction and other cellular issues, suggesting that gene therapy could potentially offer a new treatment strategy for PCD.
View Article and Find Full Text PDF

The design of photobioreactors for microalgae cultivation aims to achieve an architecture that allows the most efficient photosynthetic growth. The availability of light at wavelengths that are important for photosynthesis is therefore particularly crucial for reactor design. While testing different reactor types in practice is expensive, simulations could effectively limit the range of material and reactor design options.

View Article and Find Full Text PDF

Metallic nanostructures play a vital role in technological advancement, providing exceptional performance and improved adaptability in comparison to their bulk equivalents. Conventional synthesis techniques frequently depend on dangerous reducing agents to transform metal ions into Nanoparticles (NPs), which presents considerable environmental and health issues. In contrast, the approach of green synthesis, which emphasizes the use of non-toxic reagents, has garnered significant interest as a sustainable method for the fabrication of Metallic Nanoparticles (MNPs).

View Article and Find Full Text PDF

Photosynthetic microalgae are promising green cell factories for the sustainable production of high-value chemicals and biopharmaceuticals. The chloroplast organelle is being developed as a chassis for synthetic biology as it contains its own genome (the plastome) and some interesting advantages, such as high recombinant protein titers and a diverse and dynamic metabolism. However, chloroplast engineering is currently hampered by the lack of standardized cloning tools and Design-Build-Test-Learn workflows to ease genomic and metabolic engineering.

View Article and Find Full Text PDF

The marine microbiome arouses an increasing interest, aimed at better understanding coral reef biodiversity, coral resilience, and identifying bioindicators of ecosystem health. The present study is a microbiome mining of three environmentally contrasted sites along the Hermitage fringing reef of La Réunion Island (Western Indian Ocean). This mining aims to identify bioindicators of reef health to assist managers in preserving the fringing reefs of La Réunion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!