Scalable Synthesis of Fe/N-Doped Porous Carbon Nanotube Frameworks for Aqueous Zn-Air Batteries.

Chemistry

State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China.

Published: January 2019

Aqueous Zn-air batteries are emerging to be ideal next-generation energy-storage devices with high safety and high energy/power densities. However, the rational design and fabrication of low-cost, highly efficient, and durable electrocatalysts on the cathode side remain highly desired. Herein, template-assisted, scalable Fe-implanted N-doped porous carbon nanotube networks (Fe-N-CNNs) have been synthesized based on an environmentally friendly template hydroxyapatite nanowires (HAP NWs). Thanks to the hierarchical meso/micropores, high specific surface area, and abundant active sites, the optimized Fe-N-CNNs exhibit excellent oxygen reduction activity. Furthermore, the Zn-air batteries based on the Fe-N-CNNs cathode deliver a high discharge voltage of 1.27 V at a current density of 20 mA cm and a large peak power density of 202.2 mW cm . More far-reaching, this HAP-based template strategy opens a new avenue toward the mass production of efficient, cost-effective electrocatalysts, and the Fe-N-CNNs with hollow interiors are expected to extend their other potential uses in energy storage, molecular sieves, adsorbents, and biomedical engineering.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.201804643DOI Listing

Publication Analysis

Top Keywords

zn-air batteries
12
porous carbon
8
carbon nanotube
8
aqueous zn-air
8
scalable synthesis
4
synthesis fe/n-doped
4
fe/n-doped porous
4
nanotube frameworks
4
frameworks aqueous
4
batteries aqueous
4

Similar Publications

This work aims to deal with the challenges associated with designing complementary bifunctional electrocatalysts and a separator/membrane that enables rechargeable zinc-air batteries (RZABs) with nearly solid-state operability. This solid-state RZAB was accomplished by integrating a bifunctional electrocatalyst based on Ru-RuO interface nanoparticles supported on nitrogen-doped (N-doped) graphene (Ru-RuO/NGr) and a dual-doped poly(acrylic acid) hydrogel (d-PAA) electrolyte soaked in KOH with sodium stannate additive. The catalyst shows enhanced activity and stability toward the two oxygen reactions, i.

View Article and Find Full Text PDF

The dual-site electrocatalysts formed by metal single atoms combines with metal nanoparticles represent a promising strategy to enhance both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) performance. Herein, defect engineering is applied to dual-site ORR and OER electrocatalysts. Its design, synthesis, structural properties, and catalytic performance experimentally and theoretically are insightfully studied for the single-atomic Fe─N and the adjacent FeCo nanoalloy (FeCo) as dual-site loading on nitrogen-doped graphene aerogel (Fe─N/FeCo@NGA).

View Article and Find Full Text PDF

In situ visualization of interfacial processes at nanoscale in non-alkaline Zn-air batteries.

Nat Commun

December 2024

Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.

Zn-air batteries (ZABs) present high energy density and high safety but suffer from low oxygen reaction reversibility and dendrite growth at Zn electrode in alkaline electrolytes. Non-alkaline electrolytes have been considered recently for improving the interfacial processes in ZABs. However, the dynamic evolution and reaction mechanisms regulated by electrolytes at both the positive and Zn negative electrodes remain elusive.

View Article and Find Full Text PDF

Due to the high catalytic activity and stability for oxygen reduction reaction, N-coordinated Fe-Cu dual-metal doped carbon material (FeCu-N-C) is considered to be one of the promising electrode materials for metal-air battery and fuel cells. Herein, FeCu-N-C dual-metal catalysts was synthesized by an adsorption-calcination strategy. The prepared FeCu-N-C exhibited high activity and stability both in alkaline and acidic media.

View Article and Find Full Text PDF

Aqueous alkaline Zn-air batteries (ZABs) have garnered widespread attention due to their high energy density and safety, however, the poor electrochemical reversibility of Zn and low battery round-trip efficiency strongly limit their further development. The manipulation of an intricate microscopic balance among anode/electrolyte/cathode, to enhance the performance of ZABs, critically relies on the formula of electrolytes. Herein, the Bayesian optimization approach is employed to achieve the effective design of optimal compositions of multicomponent electrolytes, resulting in the remarkable enhancement of ZAB performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!