Strength training is often prescribed for children with cerebral palsy (CP); however, links between strength gains and mobility are unclear. Nine children (age 14 ± 3 years; GMFCS I-III) with spastic CP completed a 6-week strength-training program. Musculoskeletal gait simulations were generated for four children to assess training effects on muscle forces and function. There were increases in isometric joint strength, but no statistical changes in fast-as-possible walking speed or endurance after training. The walking simulations revealed changes in muscle forces and contributions to body center of mass acceleration, with greater forces from the hip muscles during walking most commonly observed. A progressive strength-training program can result in isometric and dynamic strength gains in children with CP, associated with variable mobility outcomes.

Download full-text PDF

Source
http://dx.doi.org/10.1080/00222895.2018.1519691DOI Listing

Publication Analysis

Top Keywords

muscle forces
12
strength training
8
training effects
8
effects muscle
8
forces contributions
8
cerebral palsy
8
strength gains
8
strength-training program
8
strength
5
forces
4

Similar Publications

Microgravity-induced cardiac remodeling and dysfunction present significant challenges to long-term spaceflight, highlighting the urgent need to elucidate the underlying molecular mechanisms and develop precise countermeasures. Previous studies have outlined the important role of miRNAs in cardiovascular disease progression, with miR-199a-3p playing a crucial role in myocardial injury repair and the maintenance of cardiac function. However, the specific role and expression pattern of miR-199a-3p in microgravity-induced cardiac remodeling remain unclear.

View Article and Find Full Text PDF

Ankle push-off is important for efficient, human-like walking, and many prosthetic devices mimic push-off using motors or elastic elements. The knee is extended throughout the stance phase and begins to buckle just before push-off, with timing being crucial. However, the exact mechanisms behind this buckling are still unclear.

View Article and Find Full Text PDF

Objective: Creating an intracortical brain-computer interface (iBCI) capable of seamless transitions between tasks and contexts would greatly enhance user experience. However, the nonlinearity in neural activity presents challenges to computing a global iBCI decoder. We aimed to develop a method that differs from a globally optimized decoder to address this issue.

View Article and Find Full Text PDF

regenerates one head when cut, but how forces shaping the head are coordinated remains unclear. Soft compression of 's head-regenerating tissues induces the formation of viable, two-headed animals. Compression creates new topological defects in the supracellular orientational order of muscular actin fibers, associated with additional heads.

View Article and Find Full Text PDF

Our purpose was to compare the influence of the spectral content of motor unit recordings on the calculation of electromechanical delay and on the prediction of force fluctuations from measures of the variability in discharge times and neural drive during steady isometric contractions with the first dorsal interosseus muscle. Participants ( = 42; 60 ± 13 yrs) performed contractions at 5% and 20% MVC. After satisfying inclusion criteria, high-density surface EMG recordings from a subset of 23 participants were decomposed into the discharge times of 530 motor units.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!