Effect of Asymmetric Mode on CO State-to-State Vibrational-Chemical Kinetics.

J Phys Chem A

Saint Petersburg State University , 7/9 Universitetskaya nab., St. Petersburg , 199034 , Russia.

Published: November 2018

Coupled state-to-state vibrational-chemical kinetics, gas dynamics, and heat transfer in the five-component mixture of dissociated CO are studied using the complete three-mode kinetic model and the reduced scheme involving mainly the vibrational states of the asymmetric mode. The emphasis is on the effect of asymmetric vibrations on the rate of dissociation, fluid dynamic variables, and heat flux. It is shown that intermode vibrational energy transitions between CO and CO asymmetric mode may considerably decrease the rate of dissociation; the presence of CO in the mixture quickly depletes high vibrational states and thus inhibits dissociation at low temperatures. The reduced model overpredicts populations of highly located states of the asymmetric mode, especially when intermode VV transitions are neglected; therefore, using the simplified model in flows with dominating dissociation may yield overestimated dissociation rate. In the hypersonic flow along the stagnation line, the influence of asymmetric vibrations on the fluid dynamics and heat transfer is weak; the main role belongs to chemical reactions and VT transitions in the bending mode. In this case, the computationally efficient simplified model can be used to predict macroscopic variables and heat flux without significant loss of accuracy.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpca.8b07523DOI Listing

Publication Analysis

Top Keywords

asymmetric mode
16
state-to-state vibrational-chemical
8
vibrational-chemical kinetics
8
dynamics heat
8
heat transfer
8
vibrational states
8
states asymmetric
8
asymmetric vibrations
8
rate dissociation
8
variables heat
8

Similar Publications

Chemodivergent, enantio- and regioselective couplings of alkynes, aldehydes and silanes enabled by nickel/N-heterocyclic carbene catalysis.

Sci Bull (Beijing)

December 2024

State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China. Electronic address:

Divergent synthesis of valuable molecules through common starting materials and metal catalysis represents a longstanding challenge and a significant research goal. We here describe chemodivergent, highly enantio- and regioselective nickel-catalyzed reductive and dehydrogenative coupling reactions of alkynes, aldehydes, and silanes. A single chiral Ni-based catalyst is leveraged to directly prepare three distinct enantioenriched products (silyl-protected trisubstituted chiral allylic alcohols, oxasilacyclopentenes, and silicon-stereogenic oxasilacyclopentenes) in a single chemical operation.

View Article and Find Full Text PDF

DtpC was isolated from the ditryptophenaline biosynthetic pathway found in filamentous fungi as a cytochrome P450 (P450) that catalyzes the dimerization of diketopiperazines. More recently, several similar P450s were discovered. While a vast majority of such P450s generate asymmetric diketopiperazine dimers, DtpC and other fungal P450s predominantly catalyze the formation of symmetric dimer products.

View Article and Find Full Text PDF

This paper had conducted tensile shear tests on single-lap joints (SLJs)bonded structures of carbon fiber reinforced resin matrix (CFRP) composite laminates with different overlap lengths, overlap widths, overlap model, adherend material, and adhesive layer thicknesses under two environments: room temperature dry state (RTD) and elevated temperature wet state (ETW). The failure modes were observed, and load-displacement curves were obtained. The microscopic morphology of the fracture surface was observed by scanning electron microscope (SEM).

View Article and Find Full Text PDF

Mycolactone is a complex macrolide toxin produced by , the causative agent of Buruli ulcer. The aim of this paper is to review the chemistry, biosynthetic, and synthetic pathways of mycolactone A/B to help develop an understanding of the mode of action of these polyketides as well as their therapeutic potential. The synthetic work has largely been driven by the desire to afford researchers enough (≥100 mg) of the pure toxins for systematic biological studies toward understanding their very high biological activities.

View Article and Find Full Text PDF

Copper-Catalyzed Asymmetric Nucleophilic Opening of 1,1,2,2-Tetrasubstituted Donor-Acceptor Cyclopropanes for the Synthesis of α-Tertiary Amines.

J Am Chem Soc

December 2024

State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China.

Catalytic asymmetric transformation of donor-acceptor cyclopropanes (DACs) has been proven to be a highly valuable and robust strategy to construct diverse types of enantioenriched molecules. However, the use of 1,1,2,2-tetrasubstituted DACs to form products bearing quaternary stereocenters remains a long-term unsolved challenge. Here, we report the copper-catalyzed asymmetric aminative ring opening of tetrasubstituted alkynyl DACs that delivers a myriad of α-tertiary amines with high levels of enantioselectivities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!