Copper-Mediated C-H Amination of Imidazopyridines with N-Fluorobenzenesulfonimide.

J Org Chem

College of Chemistry and Molecular Engineering , Zhengzhou University, No. 100 Science Road , Zhengzhou , Henan 450001 , P. R. China.

Published: November 2018

A copper-mediated direct C3 amination of imidazopyridines has been disclosed under additive-free conditions in short reaction times. This methodology utilizes commercially available N-fluorobenzenesulfonimide (NFSI) as the amino source, which exhibits broad substrate scope and good functional group tolerance. The obtained C3-aminated imidazopyridines can undergo further desulfonylation transformations. Control experiments suggest that this reaction probably proceeds via a free-radical mechanism. Moreover, NFSI also shows potential application in C-H fluorination of imidazopyridines.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.joc.8b02348DOI Listing

Publication Analysis

Top Keywords

amination imidazopyridines
8
copper-mediated c-h
4
c-h amination
4
imidazopyridines
4
imidazopyridines n-fluorobenzenesulfonimide
4
n-fluorobenzenesulfonimide copper-mediated
4
copper-mediated direct
4
direct amination
4
imidazopyridines disclosed
4
disclosed additive-free
4

Similar Publications

This study showcases successfully switchable approaches to accomplish the C3-aryl methylation and C3- amino methylation of privileged nitrogen-containing pharmaceutical compounds "imidazopyridines" with distinct amines, which surmounts the long-standing requirement for a superfluous directing group. These two transformations manifest pronounced regio- and chemo-divergent behavior, successfully demonstrating unprecedented multicomponent "abnormal Mannich and Mannich-type" reactions. The remarkable environmentally benign protocol has been efficiently extended to concise the synthesis and late-stage derivatization.

View Article and Find Full Text PDF

Structure-Based Design of Xanthine-Imidazopyridines and -Imidazothiazoles as Highly Potent and In Vivo Efficacious Tryptophan Hydroxylase Inhibitors.

J Med Chem

November 2023

Chemical Biology Platform, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Straße 10, 13125 Berlin-Buch, Germany.

Tryptophan hydroxylases catalyze the first and rate-limiting step in the biosynthesis of serotonin, a well-known neurotransmitter that plays an important role in multiple physiological functions. A reduction of serotonin levels, especially in the brain, can cause dysregulation leading to depression or insomnia. In contrast, overproduction of peripheral serotonin is associated with symptoms like carcinoid syndrome and pulmonary arterial hypertension.

View Article and Find Full Text PDF

Phosphonic acid-containing inhibitors of tyrosyl-DNA phosphodiesterase 1.

Front Chem

August 2022

Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, United States.

Tyrosyl-DNA phosphodiesterase 1 (TDP1) repairs stalled type I topoisomerase (TOP1)-DNA complexes by hydrolyzing the phosphodiester bond between the TOP1 Y723 residue and the 3'-phosphate of its DNA substrate. Although TDP1 antagonists could potentially reduce the dose of TOP1 inhibitors needed to achieve effective anticancer effects, the development of validated TDP1 inhibitors has proven to be challenging. This may, in part, be due to the open and extended nature of the TOP1 substrate binding region.

View Article and Find Full Text PDF

Discovery of a tetraarylhydrazine catalyst for electrocatalytic synthesis of imidazo-fused N-heteroaromatic compounds.

Org Biomol Chem

October 2021

Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.

The development of electrocatalytic synthetic methods hinges on efficient molecular catalysts. Triarylamines are well-known redox catalysts because of the good stability of their corresponding amine radical cations. Herein we show that tris(4-(-butyl)phenyl)amine decomposes unexpectedly during electrolysis in MeOH/THF to afford a tetraarylhydrazine, 1,1,2,2-tetrakis(4-(-butyl)phenyl)hydrazine.

View Article and Find Full Text PDF

In this study, ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) combined with principal component analysis (PCA) were used to investigate the effects of process conditions on the profiles of carcinogenic and mutagenic heterocyclic aromatic amine (HAA) in the pork roasted at 175 °C, 200 °C, 225 °C and 250 °C for 10, 15, 20, 25, 30, 35 and 40 min. Twelve HAAs from four categories, including carboline (Norharman, Harman, and Phe-p-1), imidazopyridine (PhIP, 4'-OH-PhIP, DMIP, and 1,5,6-TMIP), imidazoquinoline (IQ, IQ [4,5-b], and MeIQ), and imidazoquinoxaline (MeIQx and 4,8-DiMeIQx), were detected, quantified and used to compose the HAA profiles in roasted pork. After being Analyzed by PCA, the distributions of HAA profiles from different temperature on the PCA score plot demonstrated that there are significant differences among the HAA profiles from different temperatures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!