Cadmium (Cd) in soil was stabilized using copper loaded attapulgite (Cu/ATP) in a microwave (MW) system. Excellent Cd stability in soil was achieved with Cu/ATP addition due to higher adsorption energy (1.38 eV) of Cu/ATP for Cd than that of ATP (∼1 eV), confirmed by density functional theory calculations. The strong hybridization of the s, p-orbitals of Cd with the s, p, d-orbitals of Cu on ATP contributed to the strong interactions between Cd and Cu/ATP. The stability performance of Cd in Cu/ATP-treated soil was further enhanced after MW irradiation through a series of phase transformation to more stable Cd-bearing crystalline minerals. The transformation was initiated by MW-induced "hot spots", which created cationic vacancy on Cu/ATP surface and enhanced the solid-state reactions between Cd and Cu/ATP framework. The total bond orders of Cd in the formed CdAlO crystalline mineral elevated to 3.38, which was 5-fold higher than that for Cd on Cu/ATP, ensuring the long-term stability of Cd even after 360 curing days. Cd contaminated soil from a former industrial electroplating site was successfully stabilized with the proposed strategy. The research provides an effective stabilization strategy as well as a comprehensive understanding of the mechanism of long-term Cd stabilization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.est.8b02832 | DOI Listing |
Environ Res
December 2024
College of Environmental Science and Engineering, Beijing University of Technology, No. 100 Pingleyuan, Chaoyang District, Beijing 100124, China.
Landfill leachate nanofiltration concentrates (LLNC) contain complex organic pollutants that are difficult to treat. This study developed a copper-doped attapulgite-chitosan composite catalyst (Cu@ATP-CTS) for efficient LLNC degradation in a Fenton-like system. The incorporation of attapulgite extended the effective pH range of Fenton reactions from 2 to 8, overcoming traditional limitations.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
School of Food & Biological Engineering, Anhui Province Key Laboratory of Agricultural Products Modern Processing, Hefei University of Technology, Hefei 230009, China. Electronic address:
The intelligently efficient, reliable, economical and portable onsite assay toward pyrethroid pesticides (PPs) residues is critical for food safety analysis and environmental pollution traceability. Here, a fluorescent nanozyme Cu-ATP@ [Ru(bpy)] with laccase-like activity was designed to develop a versatile machine learning-assisted colorimetric and fluorescence dual-modal assay for efficient onsite intelligent decision recognition and quantification of PPs residues. In the presence of alkaline phosphatase (ALP), the laccase-like activity of Cu-ATP@ [Ru(bpy)] was enhanced to oxidize colorless o-phenylenediamine (OPD) into dark-yellow 2,3-diaminophenazine (DAP) via electron transfer, appearing a new yellow fluorescence at 550 nm.
View Article and Find Full Text PDFLuminescence
March 2020
Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, China.
Tea, originating from China, is an important part of Chinese traditional culture. There are different qualities of and producing areas for tea on the market, therefore it is necessary to discriminate between teas in a fast and accurate way. In this study, a chemical sensor array based on nanozymes was developed to discriminate between different metal ions and teas.
View Article and Find Full Text PDFEnviron Sci Technol
November 2018
Brook Byers Institute for Sustainable Systems, School of Civil and Environmental Engineering , Georgia Institute of Technology, Atlanta , Georgia 30332 , United States.
Cadmium (Cd) in soil was stabilized using copper loaded attapulgite (Cu/ATP) in a microwave (MW) system. Excellent Cd stability in soil was achieved with Cu/ATP addition due to higher adsorption energy (1.38 eV) of Cu/ATP for Cd than that of ATP (∼1 eV), confirmed by density functional theory calculations.
View Article and Find Full Text PDFJ Inorg Biochem
December 2017
Faculty of Chemistry, A. Mickiewicz University, Umultowska 89b, 61614 Poznan, Poland.
The mode of interaction and thermodynamic stability of complexes formed in binary and ternary Cu(II)/ATP/triamines systems were studied using potentiometric and spectroscopic (NMR, EPR, UV-Vis) methods. It was found that in binary metal-free systems ATP/HPA species are formed (PA: Spd=spermidine or 3,3-tri=1,7-diamino-4-azaheptane) where the phosphate groups from nucleotides are preferred negative centers and protonated amine groups of amines are positive centers of reaction. In the ternary systems Cu/ATP/H(PA) as well as Cu/(ATP)(PA) species are formed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!