Evidence for Cross Species Extrapolation of Mammalian-Based High-Throughput Screening Assay Results.

Environ Sci Technol

Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division , US Environmental Protection Agency , 6201 Congdon Blvd. , Duluth , Minnesota 55804 , United States.

Published: December 2018

High-throughput screening (HTS) and computational technologies have emerged as important tools for chemical hazard identification. The US Environmental Protection Agency (EPA) launched the Toxicity ForeCaster (ToxCast) Program, which has screened thousands of chemicals in hundreds of mammalian-based HTS assays for biological activity. The data are being used to prioritize toxicity testing on those chemicals likely to lead to adverse effects. To use HTS assays in predicting hazard to both humans and wildlife, it is necessary to understand how broadly these data may be extrapolated across species. The US EPA Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS; https://seqapass.epa.gov/seqapass/ ) tool was used to assess conservation of the 484 protein targets represented in the suite of ToxCast assays and other HTS assays. To demonstrate the utility of the SeqAPASS data for guiding extrapolation, case studies were developed which focused on targets of interest to the US Endocrine Disruptor Screening Program and the Organisation for Economic Cooperation and Development. These case studies provide a line of evidence for conservation of endocrine targets across vertebrate species, with few exceptions, and demonstrate the utility of SeqAPASS for defining the taxonomic domain of applicability for HTS results and identifying organisms for suitable follow-up toxicity tests.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8283686PMC
http://dx.doi.org/10.1021/acs.est.8b04587DOI Listing

Publication Analysis

Top Keywords

hts assays
12
high-throughput screening
8
demonstrate utility
8
utility seqapass
8
case studies
8
hts
5
evidence cross
4
species
4
cross species
4
species extrapolation
4

Similar Publications

Fragment-Based Drug Discovery: Small Fragments, Big Impact - Success Stories of Approved Oncology Therapeutics.

Bioorg Chem

January 2025

Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal, Academy of Higher Education, Manipal, Karnataka 576104, India.

Fragment-Based Drug Discovery (FBDD) has revolutionized drug discovery by overcoming the challenges of traditional methods like combinatorial chemistry and high-throughput screening (HTS). Leveraging small, low-molecular-weight fragments, FBDD achieves higher hit rates, reduced screening costs, and faster development timelines for clinically relevant drug candidates. This review explores FBDD's core principles, innovative methodologies, and its success in targeting diverse protein classes, including previously "undruggable" targets.

View Article and Find Full Text PDF

First report of privet leaf blotch-associated virus (PLBaV) infecting lilac ( L.) in France.

Plant Dis

January 2025

INRA Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, INRA - Université de Bordeaux, CS20032, Villenave d'Ornon , France, 33882 cedex;

Privet leaf blotch-associated virus (PLBaV) is an Idaeovirus discovered by high-throughput sequencing (HTS) in privet (Ligustrum japonicum L) in southern Italy in 2017 (Navarro et al., 2017). In privet, it causes a leaf blotch disease with yellowish or whitish chlorotic blotches or ringspots.

View Article and Find Full Text PDF

Obstacles in quantifying A-to-I RNA editing by Sanger sequencing.

Methods Enzymol

January 2025

Faculty of Biology, Technion - Israel Institute of Technology, Technion City, Haifa, Israel. Electronic address:

Adenosine-to-Inosine (A-to-I) RNA editing is the most prevalent type of RNA editing, in which adenosine within a completely or largely double-stranded RNA (dsRNA) is converted to inosine by deamination. RNA editing was shown to be involved in many neurological diseases and cancer; therefore, detection of A-to-I RNA editing and quantitation of editing levels are necessary for both basic and clinical biomedical research. While high-throughput sequencing (HTS) is widely used for global detection of editing events, Sanger sequencing is the method of choice for precise characterization of editing site clusters (hyper-editing) and for comparing levels of editing at a particular site under different environmental conditions, developmental stages, genetic backgrounds, or disease states.

View Article and Find Full Text PDF

Defining the Polycystin Pharmacophore Through HTS & Computational Biophysics.

bioRxiv

January 2025

Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.

Background And Purpose: Polycystins (PKD2, PKD2L1) are voltage-gated and Ca-modulated members of the transient receptor potential (TRP) family of ion channels. Loss of PKD2L1 expression results in seizure-susceptibility and autism-like features in mice, whereas variants in PKD2 cause autosomal dominant polycystic kidney disease. Despite decades of evidence clearly linking their dysfunction to human disease and demonstrating their physiological importance in the brain and kidneys, the polycystin pharmacophore remains undefined.

View Article and Find Full Text PDF

Transient protein-protein interactions play key roles in controlling dynamic cellular responses. Many examples involve globular protein domains that bind to peptide sequences known as Short Linear Motifs (SLiMs), which are enriched in intrinsically disordered regions of proteins. Here we describe a novel functional assay for measuring SLiM binding, called Systematic Intracellular Motif Binding Analysis (SIMBA).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!