Opto-Spintronics: Photoisomerization-Induced Spin State Switching at 300 K in Photochrome Cobalt-Dioxolene Thin Films.

J Am Chem Soc

Department of Chemistry , University of Victoria, PO Box 1700 STN CSC , Victoria , British Columbia V8W 2Y2 , Canada.

Published: November 2018

AI Article Synopsis

  • Controllable quantum systems are being studied for their potential in quantum computing and secure data processing, with a focus on improving magnetic states at higher temperatures (above 200 K).
  • The researchers demonstrated a method for reversible light-induced magnetization switching in organic thin films that operate effectively between 300-330 K using special ligands that change structure in response to light.
  • They successfully generated new photomagnetic states through a process called PISCES, which enables temporary changes in the spin state of cobalt at high transition temperatures, opening up avenues for future quantum information technologies.

Article Abstract

Controllable quantum systems are under active investigation for quantum computing, secure information processing, and nonvolatile memory. The optical manipulation of spin quantum states provides an important strategy for quantum control with both temporal and spatial resolution. Challenges in increasing the lifetime of photoinduced magnetic states at T > 200 K have hindered progress toward utilizing photomagnetic materials in quantum device architectures. Here we demonstrate reversible light-induced magnetization switching in an organic thin film at device operating temperatures of 300-330 K. By utilizing photochromic ligands that undergo structural changes in the solid state, the changes in ligand field associated with photoisomerization modulate the ligand field and in turn the oxidation and spin state of a bound metal center. Green light irradiation (λ = 550 nm) of a spirooxazine cobalt-dioxolene complex induces photoisomerization of the ligand that in turn triggers a reversible intramolecular charge-transfer coupled spin-transition process at the cobalt center. The generation of photomagnetic states through conversion between a low-spin Co(III)-semiquinone doublet and a high-spin Co(II)-bis-semiquinone sextet state has been demonstrated in both solution and the solid state and is described as a photoisomerization-induced spin-charge excited state (PISCES) process. The high transition temperature (325 K) and long-lived photoinduced state (τ = 10 s at 300 K) are dictated by the photochromic ligand. Theory provides effective modeling of the phenomenon and long-term strategies to further modulate the lifetimes of photomagnetic states for quantum information technologies at the single molecule level.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.8b09190DOI Listing

Publication Analysis

Top Keywords

spin state
8
solid state
8
ligand field
8
photomagnetic states
8
state
7
quantum
6
opto-spintronics photoisomerization-induced
4
photoisomerization-induced spin
4
state switching
4
switching 300
4

Similar Publications

The emergence of spinon quasiparticles, which carry spin but lack charge, is a hallmark of collective quantum phenomena in low-dimensional quantum spin systems. While the existence of spinons has been demonstrated through scattering spectroscopy in ensemble samples, real-space imaging of these quasiparticles within individual spin chains has remained elusive. In this study, we construct individual Heisenberg antiferromagnetic spin-1/2 chains using open-shell [2]triangulene molecules as building blocks.

View Article and Find Full Text PDF

Energetic and Electronic Properties of AcX and LaX (X = O and F).

J Phys Chem A

January 2025

Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487-0336, United States.

The bonding and spectroscopic properties of LaX and AcX (X = O and F) diatomic molecules were studied by high-level ab initio CCSD(T) and SO-CASPT2 electronic structure calculations. Bond dissociation energies (BDEs) were calculated at the Feller-Peterson-Dixon (FPD) level. Potential energy curves and spectroscopic constants for the lowest-lying spin-orbit Ω states were obtained at the SO-CASPT2/aQ-DK level.

View Article and Find Full Text PDF

Background: As ferroptosis is a key factor in renal fibrosis (RF), iron deposition monitoring may help evaluating RF. The capability of quantitative susceptibility mapping (QSM) for detecting iron deposition in RF remains uncertain.

Purpose: To investigate the potential of QSM to detect iron deposition in RF.

View Article and Find Full Text PDF

Soluble Covalent Organic Frameworks as Efficient Lithiophilic Modulator for High-Performance Lithium Metal Batteries.

Angew Chem Int Ed Engl

January 2025

City University of Hong Kong, Department of Physics and Materials Science, 83 Tat Chee Ave, Kowloon Tong, 999077, Hong Kong, HONG KONG.

Lithium metal batteries (LMBs) are regarded as the potential alternative of lithium-ion batteries due to their ultrahigh theoretical specific capacity (3860 mAh g-1). However, severe instability and safety problems caused by the dendrite growth and inevitable side reactions have hindered the commercialization of LMBs. To solve them, in this contribution, a design strategy of soluble lithiophilic covalent organic frameworks (COFs) is proposed.

View Article and Find Full Text PDF

Design for Telecom-Wavelength Quantum Emitters in Silicon Based on Alkali-Metal-Saturated Vacancy Complexes.

ACS Nano

January 2025

Division of Physical Sciences, College of Letters and Science, University of California Los Angeles, Los Angeles, California 90095, United States.

Defect emitters in silicon are promising contenders as building blocks of solid-state quantum repeaters and sensor networks. Here, we investigate a family of possible isoelectronic emitter defect complexes from a design standpoint. We show that the identification of key physical effects on quantum defect state localization can guide the search for telecom-wavelength emitters.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!