Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Purpose: To develop histology-informed simulations of diffusion tensor cardiovascular magnetic resonance (DT-CMR) for typical in-vivo pulse sequences and determine their sensitivity to changes in extra-cellular space (ECS) and other microstructural parameters.
Methods: We synthesised the DT-CMR signal from Monte Carlo random walk simulations. The virtual tissue was based on porcine histology. The cells were thickened and then shrunk to modify ECS. We also created idealised geometries using cuboids in regular arrangement, matching the extra-cellular volume fraction (ECV) of 16-40%. The simulated voxel size was 2.8 × 2.8 × 8.0 mm for pulse sequences covering short and long diffusion times: Stejskal-Tanner pulsed-gradient spin echo, second-order motion-compensated spin echo, and stimulated echo acquisition mode (STEAM), with clinically available gradient strengths.
Results: The primary diffusion tensor eigenvalue increases linearly with ECV at a similar rate for all simulated geometries. Mean diffusivity (MD) varies linearly, too, but is higher for the substrates with more uniformly distributed ECS. Fractional anisotropy (FA) for the histology-based geometry is higher than the idealised geometry with low sensitivity to ECV, except for the long mixing time of the STEAM sequence. Varying the intra-cellular diffusivity (D ) results in large changes of MD and FA. Varying extra-cellular diffusivity or using stronger gradients has minor effects on FA. Uncertainties of the primary eigenvector orientation are reduced using STEAM.
Conclusions: We found that the distribution of ECS has a measurable impact on DT-CMR parameters. The observed sensitivity of MD and FA to ECV and D has potentially interesting applications for interpreting in-vivo DT-CMR parameters.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6637383 | PMC |
http://dx.doi.org/10.1002/mrm.27561 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!