Electrophoretic exclusion (EE) is a counterflow gradient technique that exploits hydrodynamic flow and electrophoretic forces to exclude, enrich, and separate analytes. Resolution for this technique has been theoretically examined and the smallest difference in electrophoretic mobilities that can be completely separated is estimated to be 10  cm /Vs. Traditional and mesoscale systems have been used, whereas microfluidics offers a greater range of geometries and configurations towards approaching this theoretical limit. To begin to understand the impact of seemingly subtle changes to the entrance flow and the electric field configurations, three closely related microfluidic interfaces were modeled, fabricated, and tested. These interfaces consisted of systematically varying placement of an asymmetric electrode relative to a channel entrance: leading electrode placed outside the channel entrance, leading electrode aligned with the channel, and leading electrode placed within the channel. A charged fluorescent dye is used as a sensitive and accurate probe for the model and to test the concentration variation at these interfaces. Models and experiments focused on visualizing the concentration profile in areas of high temporal dynamics, thus providing a severe test of the models. Experimental data and simulation results showed strong qualitative agreement. The complexity of the electric and flow fields about this interface and the agreement between models and testing suggests the theoretical assessment capabilities can be used to faithfully design novel and more efficient interfaces.

Download full-text PDF

Source
http://dx.doi.org/10.1002/elps.201700497DOI Listing

Publication Analysis

Top Keywords

leading electrode
12
asymmetric electrode
8
electrophoretic exclusion
8
channel entrance
8
entrance leading
8
electrode channel
8
electrode
5
simulation experiment
4
experiment asymmetric
4
electrode placement
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!