Occurrence of Chagas disease and arbovirus coinfections is unknown, despite the vast co-endemic areas throughout the Americas. This study examined the proportion of individuals positive for and coinfections with dengue, chikungunya, and Zika viruses in Machala, Ecuador (January 2014-December 2015). Chagas seropositivity was evaluated with five commercially available assays. Dengue infections were identified by nonstructural protein 1 rapid test and enzyme linked immunosorbent assay (ELISA), immunoglobulin M ELISA, and reverse transcription PCR (RT-PCR); chikungunya and Zika infections were identified by RT-PCR. Of 658 individuals, six were positive for (0.91%), including one /dengue coinfection and one /chikungunya/dengue coinfection. The clinical manifestations of coinfected individuals corresponded to severe dengue and dengue with warning signs, respectively. We observed discrepant results by using the Hemagen Chagas kit and the rapid test Chagas Detect Plus (false positives: 3.9% and 15.4%), highlighting the need to assess diagnostic assays in geographic regions with distinct taxonomic units of

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6283517PMC
http://dx.doi.org/10.4269/ajtmh.18-0441DOI Listing

Publication Analysis

Top Keywords

chagas disease
12
individuals positive
8
chikungunya zika
8
infections identified
8
rapid test
8
chagas
6
disease southern
4
southern coastal
4
coastal ecuador
4
ecuador coinfections
4

Similar Publications

Novel isothermal nucleic acid amplification method for detecting malaria parasites.

Appl Microbiol Biotechnol

December 2024

Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil.

Malaria, a parasitic disease caused by Plasmodium spp. and transmitted by Anopheles mosquitoes, remains a major global health issue, with an estimated 249 million cases and 608,000 deaths in 2022. Rapid and accurate diagnosis and treatment are crucial for malaria control and elimination.

View Article and Find Full Text PDF

Most triatomine bugs inhabit nests and shelters of vertebrates, some of which are closely associated with palm trees. A few species occupy domestic and peridomestic habitats, posing a threat to human health as natural transmitters of Chagas disease. A peridomestic specimen that yielded positive results for Trypanosoma cruzi in both microscope and polymerase chain reaction tests was collected during a vector control survey in northeastern Paraguay.

View Article and Find Full Text PDF

Background And Objective: Serological screening for Chagas disease (CD) in Latin American adults living in Europe is a cost-effective strategy for transmission prevention. The World Health Organization recommends two different serological tests including native and recombinant antigens for IgG detection. In Spain, most commercialized native tests require manual processing.

View Article and Find Full Text PDF

Chagas disease is one of the most important vector-borne diseases in Mexico. Triatoma pallidipennis (Stål) is one of the most epidemiologically important vector species. Despite being classified as a single species, various studies (molecular, morphometric, and biological) on populations across its distribution suggested it is composed of a group of cryptic species.

View Article and Find Full Text PDF

The high plasticity of cells undergoing epithelial-mesenchymal transition (EMT) promotes increased tumor heterogeneity, and its interaction with tumor-associated stromal cells appears to contribute to developing a stemness phenotype. Cells with these characteristics exhibit increased resistance to chemotherapy and radiotherapy, leading to disease relapse and metastasis. Here, we discuss the activation of the Wnt/β-catenin pathway in promoting EMT and stemness within the context of cellular resistance to these therapies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!